These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31838204)

  • 1. Soft implantable device with drug-diffusion channels for the controlled release of diclofenac.
    Ji HB; Kim SN; Lee SH; Huh BK; Shin BH; Lee C; Cho YC; Heo CY; Choy YB
    J Control Release; 2020 Feb; 318():176-184. PubMed ID: 31838204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implantable micro-chip for controlled delivery of diclofenac sodium.
    Lee SH; Park M; Park CG; Kim BH; Lee J; Choi S; Nam SR; Park SH; Choy YB
    J Control Release; 2014 Dec; 196():52-9. PubMed ID: 25270113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microchannel-embedded implantable device with fibrosis suppression for prolonged controlled drug delivery.
    Ji HB; Hong JY; Kim CR; Min CH; Han JH; Kim MJ; Kim SN; Lee C; Choy YB
    Drug Deliv; 2022 Dec; 29(1):489-498. PubMed ID: 35147052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonically controlled release and targeted delivery of diclofenac sodium via gelatin magnetic microspheres.
    Saravanan M; Bhaskar K; Maharajan G; Pillai KS
    Int J Pharm; 2004 Sep; 283(1-2):71-82. PubMed ID: 15363503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Ultrasoft and Flexible PDMS-Based Balloon-Type Implantable Device for Controlled Drug Delivery.
    Muhammad T; Park B; Intisar A; Kim MS; Park JK; Kim S
    Biomater Res; 2024; 28():0012. PubMed ID: 38560578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-vitro studies of diclofenac sodium controlled-release from biopolymeric hydrophilic matrices.
    Bravo SA; Lamas MC; Salamón CJ
    J Pharm Pharm Sci; 2002; 5(3):213-9. PubMed ID: 12553888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microchip for sustained drug delivery by diffusion through microchannels.
    Lee SH; Park M; Park CG; Lee JE; Prausnitz MR; Choy YB
    AAPS PharmSciTech; 2012 Mar; 13(1):211-7. PubMed ID: 22215292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro release of sodium diclofenac from a central core matrix tablet aimed for colonic drug delivery.
    González-Rodríguez ML; Maestrelli F; Mura P; Rabasco AM
    Eur J Pharm Sci; 2003 Sep; 20(1):125-31. PubMed ID: 13678801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Technological and pharmacotherapeutic properties of selected drugs with modified release of diclofenac sodium].
    Kołodziejczyk MK; Kołodziejska J; Zgoda MM
    Polim Med; 2012; 42(2):121-32. PubMed ID: 23016443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A drug refillable device for transscleral sustained drug delivery to the retina.
    Nagai N; Saijo S; Song Y; Kaji H; Abe T
    Eur J Pharm Biopharm; 2019 Mar; 136():184-191. PubMed ID: 30690065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of gelatin microspheres loaded with diclofenac sodium for intra-articular administration.
    Saravanan M; Bhaskar K; Maharajan G; Pillai KS
    J Drug Target; 2011 Feb; 19(2):96-103. PubMed ID: 20380621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch.
    Shaheen SM; Takezoe K; Yamaura K
    Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quality Risk Management and Quality by Design for the Development of Diclofenac Sodium Intra-articular Gelatin Microspheres.
    Nakas A; Dalatsi AM; Kapourani A; Kontogiannopoulos KN; Assimopoulou AN; Barmpalexis P
    AAPS PharmSciTech; 2020 May; 21(4):127. PubMed ID: 32390062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and evaluation of chitosan/carrageenan beads for controlled release of sodium diclofenac.
    Piyakulawat P; Praphairaksit N; Chantarasiri N; Muangsin N
    AAPS PharmSciTech; 2007 Nov; 8(4):E97. PubMed ID: 18181557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diclofenac sodium loaded gelatin magnetic microspheres for intra-arterial administration: formulation, characterization and in vitro release studies.
    Saravanan M; Bhaskar K; Narayanan NV; Maharajan G; Pillai KS
    Boll Chim Farm; 2003 Oct; 142(8):347-51. PubMed ID: 15040465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of pH-sensitive tamarind seed polysaccharide-alginate composite beads for controlled diclofenac sodium delivery using response surface methodology.
    Nayak AK; Pal D
    Int J Biol Macromol; 2011 Nov; 49(4):784-93. PubMed ID: 21816168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zero-order therapeutic release from imprinted hydrogel contact lenses within in vitro physiological ocular tear flow.
    Ali M; Horikawa S; Venkatesh S; Saha J; Hong JW; Byrne ME
    J Control Release; 2007 Dec; 124(3):154-62. PubMed ID: 17964678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation and evaluation of diclofenac sodium using hydrophilic matrices.
    Rao YM; Veni JK; Jayasagar G
    Drug Dev Ind Pharm; 2001 Sep; 27(8):759-66. PubMed ID: 11699827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conductive poly(2-ethylaniline) dextran-based hydrogels for electrically controlled diclofenac release.
    Paradee N; Thanokiang J; Sirivat A
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111346. PubMed ID: 33254969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evaluation of xanthan gum-facilitated ethyl cellulose microsponges for controlled percutaneous delivery of diclofenac sodium.
    Maiti S; Kaity S; Ray S; Sa B
    Acta Pharm; 2011 Sep; 61(3):257-70. PubMed ID: 21945905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.