These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 31838457)
1. FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes. Okuda-Shimazaki J; Yoshida H; Sode K Bioelectrochemistry; 2020 Apr; 132():107414. PubMed ID: 31838457 [TBL] [Abstract][Full Text] [Related]
2. Creation of a novel DET type FAD glucose dehydrogenase harboring Escherichia coli derived cytochrome b Yanase T; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Sode K Biochem Biophys Res Commun; 2020 Sep; 530(1):82-86. PubMed ID: 32828319 [TBL] [Abstract][Full Text] [Related]
3. Engineered fungus derived FAD-dependent glucose dehydrogenase with acquired ability to utilize hexaammineruthenium(III) as an electron acceptor. Okurita M; Suzuki N; Loew N; Yoshida H; Tsugawa W; Mori K; Kojima K; Klonoff DC; Sode K Bioelectrochemistry; 2018 Oct; 123():62-69. PubMed ID: 29727765 [TBL] [Abstract][Full Text] [Related]
4. The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers. Lee I; Loew N; Tsugawa W; Lin CE; Probst D; La Belle JT; Sode K Bioelectrochemistry; 2018 Jun; 121():1-6. PubMed ID: 29291433 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase. Ishida K; Orihara K; Muguruma H; Iwasa H; Hiratsuka A; Tsuji K; Kishimoto T Anal Sci; 2018; 34(7):783-787. PubMed ID: 29998959 [TBL] [Abstract][Full Text] [Related]
6. An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes. Shiota M; Yamazaki T; Yoshimatsu K; Kojima K; Tsugawa W; Ferri S; Sode K Bioelectrochemistry; 2016 Dec; 112():178-83. PubMed ID: 26951961 [TBL] [Abstract][Full Text] [Related]
7. Mutagenesis Study of the Cytochrome c Subunit Responsible for the Direct Electron Transfer-Type Catalytic Activity of FAD-Dependent Glucose Dehydrogenase. Yamashita Y; Suzuki N; Hirose N; Kojima K; Tsugawa W; Sode K Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29561779 [TBL] [Abstract][Full Text] [Related]
8. Development of a Versatile Method to Construct Direct Electron Transfer-Type Enzyme Complexes Employing SpyCatcher/SpyTag System. Yanase T; Okuda-Shimazaki J; Asano R; Ikebukuro K; Sode K; Tsugawa W Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768169 [TBL] [Abstract][Full Text] [Related]
9. Designer fungus FAD glucose dehydrogenase capable of direct electron transfer. Ito K; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Ikebukuro K; Lin CE; La Belle J; Yoshida H; Sode K Biosens Bioelectron; 2019 Jan; 123():114-123. PubMed ID: 30057265 [TBL] [Abstract][Full Text] [Related]
10. Third generation impedimetric sensor employing direct electron transfer type glucose dehydrogenase. Ito Y; Okuda-Shimazaki J; Tsugawa W; Loew N; Shitanda I; Lin CE; La Belle J; Sode K Biosens Bioelectron; 2019 Mar; 129():189-197. PubMed ID: 30721794 [TBL] [Abstract][Full Text] [Related]
11. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase. Yamashita Y; Ferri S; Huynh ML; Shimizu H; Yamaoka H; Sode K Enzyme Microb Technol; 2013 Feb; 52(2):123-8. PubMed ID: 23273282 [TBL] [Abstract][Full Text] [Related]
12. Strategic design and improvement of the internal electron transfer of heme b domain-fused glucose dehydrogenase for use in direct electron transfer-type glucose sensors. Ito K; Okuda-Shimazaki J; Kojima K; Mori K; Tsugawa W; Asano R; Ikebukuro K; Sode K Biosens Bioelectron; 2021 Mar; 176():112911. PubMed ID: 33421758 [TBL] [Abstract][Full Text] [Related]
13. Direct Electron Transfer-Type Oxidoreductases for Biomedical Applications. Sowa K; Okuda-Shimazaki J; Fukawa E; Sode K Annu Rev Biomed Eng; 2024 Jul; 26(1):357-382. PubMed ID: 38424090 [TBL] [Abstract][Full Text] [Related]
14. In Vitro Evaluation of Miniaturized Amperometric Enzyme Sensor Based on the Direct Electron Transfer Principle for Continuous Glucose Monitoring. Inoue Y; Kusaka Y; Shinozaki K; Lee I; Sode K J Diabetes Sci Technol; 2022 Sep; 16(5):1101-1106. PubMed ID: 34986665 [TBL] [Abstract][Full Text] [Related]
15. Mediator Preference of Two Different FAD-Dependent Glucose Dehydrogenases Employed in Disposable Enzyme Glucose Sensors. Loew N; Tsugawa W; Nagae D; Kojima K; Sode K Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29144384 [TBL] [Abstract][Full Text] [Related]
16. Biosensing and electrochemical properties of flavin adenine dinucleotide (FAD)-Dependent glucose dehydrogenase (GDH) fused to a gold binding peptide. Lee H; Lee YS; Reginald SS; Baek S; Lee EM; Choi IG; Chang IS Biosens Bioelectron; 2020 Oct; 165():112427. PubMed ID: 32729543 [TBL] [Abstract][Full Text] [Related]
17. Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference. Hatada M; Loew N; Inose-Takahashi Y; Okuda-Shimazaki J; Tsugawa W; Mulchandani A; Sode K Bioelectrochemistry; 2018 Jun; 121():185-190. PubMed ID: 29471242 [TBL] [Abstract][Full Text] [Related]
18. In Vitro Continuous 3 Months Operation of Direct Electron Transfer Type Open Circuit Potential Based Glucose Sensor: Heralding the Next CGM Sensor. Lee I; Wakako T; Ikebukuro K; Sode K J Diabetes Sci Technol; 2022 Sep; 16(5):1107-1113. PubMed ID: 35466718 [TBL] [Abstract][Full Text] [Related]
19. Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum. Milton RD; Lim K; Hickey DP; Minteer SD Bioelectrochemistry; 2015 Dec; 106(Pt A):56-63. PubMed ID: 25890695 [TBL] [Abstract][Full Text] [Related]
20. Structural analysis of fungus-derived FAD glucose dehydrogenase. Yoshida H; Sakai G; Mori K; Kojima K; Kamitori S; Sode K Sci Rep; 2015 Aug; 5():13498. PubMed ID: 26311535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]