These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 31838457)
21. Highly Efficient Flavin-Adenine Dinucleotide Glucose Dehydrogenase Fused to a Minimal Cytochrome C Domain. Algov I; Grushka J; Zarivach R; Alfonta L J Am Chem Soc; 2017 Dec; 139(48):17217-17220. PubMed ID: 28915057 [TBL] [Abstract][Full Text] [Related]
22. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement. Milton RD; Giroud F; Thumser AE; Minteer SD; Slade RC Phys Chem Chem Phys; 2013 Nov; 15(44):19371-9. PubMed ID: 24121716 [TBL] [Abstract][Full Text] [Related]
23. Engineered Glucose Oxidase Capable of Quasi-Direct Electron Transfer after a Quick-and-Easy Modification with a Mediator. Suzuki N; Lee J; Loew N; Takahashi-Inose Y; Okuda-Shimazaki J; Kojima K; Mori K; Tsugawa W; Sode K Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32046321 [TBL] [Abstract][Full Text] [Related]
24. Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia cepacia. Yamaoka H; Yamashita Y; Ferri S; Sode K Biotechnol Lett; 2008 Nov; 30(11):1967-72. PubMed ID: 18581061 [TBL] [Abstract][Full Text] [Related]
25. Novel fungal FAD glucose dehydrogenase derived from Aspergillus niger for glucose enzyme sensor strips. Sode K; Loew N; Ohnishi Y; Tsuruta H; Mori K; Kojima K; Tsugawa W; LaBelle JT; Klonoff DC Biosens Bioelectron; 2017 Jan; 87():305-311. PubMed ID: 27573296 [TBL] [Abstract][Full Text] [Related]
26. Construction of Uniform Monolayer- and Orientation-Tunable Enzyme Electrode by a Synthetic Glucose Dehydrogenase without Electron-Transfer Subunit via Optimized Site-Specific Gold-Binding Peptide Capable of Direct Electron Transfer. Lee YS; Baek S; Lee H; Reginald SS; Kim Y; Kang H; Choi IG; Chang IS ACS Appl Mater Interfaces; 2018 Aug; 10(34):28615-28626. PubMed ID: 30067023 [TBL] [Abstract][Full Text] [Related]
27. Development of a third-generation glucose sensor based on the open circuit potential for continuous glucose monitoring. Lee I; Loew N; Tsugawa W; Ikebukuro K; Sode K Biosens Bioelectron; 2019 Jan; 124-125():216-223. PubMed ID: 30388564 [TBL] [Abstract][Full Text] [Related]
28. Microgravity environment grown crystal structure information based engineering of direct electron transfer type glucose dehydrogenase. Okuda-Shimazaki J; Yoshida H; Lee I; Kojima K; Suzuki N; Tsugawa W; Yamada M; Inaka K; Tanaka H; Sode K Commun Biol; 2022 Dec; 5(1):1334. PubMed ID: 36473944 [TBL] [Abstract][Full Text] [Related]
29. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing. Zhou X; Tan B; Zheng X; Kong D; Li Q Anal Biochem; 2015 Nov; 489():9-16. PubMed ID: 26278169 [TBL] [Abstract][Full Text] [Related]
30. From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase. Tsujimura S Biosci Biotechnol Biochem; 2019 Jan; 83(1):39-48. PubMed ID: 30274547 [TBL] [Abstract][Full Text] [Related]
31. Transient potentiometry based d-serine sensor using engineered d-amino acid oxidase showing quasi-direct electron transfer property. Takamatsu S; Lee I; Lee J; Asano R; Tsugawa W; Ikebukuro K; Dick JE; Sode K Biosens Bioelectron; 2022 Mar; 200():113927. PubMed ID: 34995837 [TBL] [Abstract][Full Text] [Related]
32. FAD-Dependent Glucose Dehydrogenase Immobilization and Mediation Within a Naphthoquinone Redox Polymer. Milton RD Methods Mol Biol; 2017; 1504():193-202. PubMed ID: 27770423 [TBL] [Abstract][Full Text] [Related]
33. Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor. Tsujimura S; Kojima S; Kano K; Ikeda T; Sato M; Sanada H; Omura H Biosci Biotechnol Biochem; 2006 Mar; 70(3):654-9. PubMed ID: 16556981 [TBL] [Abstract][Full Text] [Related]
34. Improvement in the thermal stability of Mucor prainii-derived FAD-dependent glucose dehydrogenase via protein chimerization. Masakari Y; Hara C; Araki Y; Gomi K; Ito K Enzyme Microb Technol; 2020 Jan; 132():109387. PubMed ID: 31731974 [TBL] [Abstract][Full Text] [Related]
35. Influence of surface adsorption on the interfacial electron transfer of flavin adenine dinucleotide and glucose oxidase at carbon nanotube and nitrogen-doped carbon nanotube electrodes. Goran JM; Mantilla SM; Stevenson KJ Anal Chem; 2013 Feb; 85(3):1571-81. PubMed ID: 23289639 [TBL] [Abstract][Full Text] [Related]
36. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors. Tsuruoka N; Sadakane T; Hayashi R; Tsujimura S Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28287419 [TBL] [Abstract][Full Text] [Related]
37. Identification and characterization of thermostable glucose dehydrogenases from thermophilic filamentous fungi. Ozawa K; Iwasa H; Sasaki N; Kinoshita N; Hiratsuka A; Yokoyama K Appl Microbiol Biotechnol; 2017 Jan; 101(1):173-183. PubMed ID: 27510979 [TBL] [Abstract][Full Text] [Related]
38. Biocomposite based on reduced graphene oxide film modified with phenothiazone and flavin adenine dinucleotide-dependent glucose dehydrogenase for glucose sensing and biofuel cell applications. Ravenna Y; Xia L; Gun J; Mikhaylov AA; Medvedev AG; Lev O; Alfonta L Anal Chem; 2015 Oct; 87(19):9567-71. PubMed ID: 26334692 [TBL] [Abstract][Full Text] [Related]
39. Site-specifically wired and oriented glucose dehydrogenase fused to a minimal cytochrome with high glucose sensing sensitivity. Algov I; Feiertag A; Alfonta L Biosens Bioelectron; 2021 May; 180():113117. PubMed ID: 33677358 [TBL] [Abstract][Full Text] [Related]