These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31838674)

  • 1. Zinc toxicity alters the photosynthetic response of red alga Pyropia yezoensis to ocean acidification.
    Ma J; Wang W; Liu X; Wang Z; Gao G; Wu H; Li X; Xu J
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):3202-3212. PubMed ID: 31838674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of elevated atmospheric CO
    Ma H; Zou D; Wen J; Ji Z; Gong J; Liu C
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33361-33369. PubMed ID: 30259325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta).
    Olischläger M; Wiencke C
    J Exp Bot; 2013 Dec; 64(18):5587-97. PubMed ID: 24127518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High nutrient availability modulates photosynthetic performance and biochemical components of the economically important marine macroalga Kappaphycus alvarezii (Rhodophyta) in response to ocean acidification.
    Long C; Zhang Y; Wei Z; Long L
    Mar Environ Res; 2024 Feb; 194():106339. PubMed ID: 38182500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased iron availability resulting from increased CO
    Chen B; Zou D; Yang Y
    Chemosphere; 2017 Apr; 173():444-451. PubMed ID: 28131089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocean acidification may alleviate the toxicity of zinc to the macroalga, Ulva lactuca.
    Ma J; Xie Y; Lu Z; Ding H; Ge W; Jia J; Xu J
    Mar Pollut Bull; 2024 Oct; 207():116818. PubMed ID: 39151327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen availability modulates the effects of ocean acidification on biomass yield and food quality of a marine crop Pyropia yezoensis.
    Gao G; Gao Q; Bao M; Xu J; Li X
    Food Chem; 2019 Jan; 271():623-629. PubMed ID: 30236725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming.
    Kang EJ; Han AR; Kim JH; Kim IN; Lee S; Min JO; Nam BR; Choi YJ; Edwards MS; Diaz-Pulido G; Kim C
    Sci Total Environ; 2021 May; 769():144443. PubMed ID: 33493906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of Zn and Cu enrichment under ocean acidification scenario on a phytoplankton community from tropical upwelling system.
    Sharma D; Biswas H; Silori S; Bandyopadhyay D; Shaik AU; Cardinal D; Mandeng-Yogo M; Ray D
    Mar Environ Res; 2020 Mar; 155():104880. PubMed ID: 32072984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO
    Shi D; Hong H; Su X; Liao L; Chang S; Lin W
    J Phycol; 2019 Jun; 55(3):521-533. PubMed ID: 30849184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ocean acidification exacerbates copper toxicity in both juvenile and adult stages of the green tide alga Ulva linza.
    Xu T; Cao J; Qian R; Song Y; Wang W; Ma J; Gao K; Xu J
    Mar Environ Res; 2021 Aug; 170():105447. PubMed ID: 34438216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and zinc or nickel exposure.
    Duckworth CG; Picariello CR; Thomason RK; Patel KS; Bielmyer-Fraser GK
    Aquat Toxicol; 2017 Jan; 182():120-128. PubMed ID: 27889504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Giant Clams and Rising CO2: Light May Ameliorate Effects of Ocean Acidification on a Solar-Powered Animal.
    Watson SA
    PLoS One; 2015; 10(6):e0128405. PubMed ID: 26083404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrepancy in photosynthetic responses of the red alga
    Du G; Li X; Wang J; Che S; Zhong X; Mao Y
    Mar Life Sci Technol; 2022 Feb; 4(1):10-17. PubMed ID: 37073361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating CO₂ leakages from CCS to determine Zn toxicity using the marine microalgae Pleurochrysis roscoffensis.
    Bautista-Chamizo E; De Orte MR; DelValls TÁ; Riba I
    Chemosphere; 2016 Feb; 144():955-65. PubMed ID: 26432538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Hyphomonas Strains on the Growth of Red Algae Pyropia Species by Attaching Specifically to Their Rhizoids.
    Fukui Y; Abe M; Kobayashi M
    Microb Ecol; 2023 Nov; 86(4):2502-2514. PubMed ID: 37369788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive effects of increasing atmospheric CO
    Wen J; Zou D
    Chemosphere; 2021 Apr; 269():129397. PubMed ID: 33383248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Ocean Acidification Acclimatised Green Tide Alga Is Robust to Changes of Seawater Carbon Chemistry but Vulnerable to Light Stress.
    Gao G; Liu Y; Li X; Feng Z; Xu J
    PLoS One; 2016; 11(12):e0169040. PubMed ID: 28033367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased light intensity enhances photosynthesis and biochemical components of red macroalga of commercial importance, Kappaphycus alvarezii, in response to ocean acidification.
    Zhang Y; Xiao Z; Wei Z; Long L
    Plant Physiol Biochem; 2024 Mar; 208():108465. PubMed ID: 38422577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viral attack exacerbates the susceptibility of a bloom-forming alga to ocean acidification.
    Chen S; Gao K; Beardall J
    Glob Chang Biol; 2015 Feb; 21(2):629-36. PubMed ID: 25252139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.