These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 31838699)

  • 1. Textile dyeing industry: environmental impacts and remediation.
    Khattab TA; Abdelrahman MS; Rehan M
    Environ Sci Pollut Res Int; 2020 Feb; 27(4):3803-3818. PubMed ID: 31838699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supercritical fluid technology as a sustainable alternative method for textile dyeing: An approach on waste, energy, and CO
    de Oliveira CRS; de Oliveira PV; Pellenz L; de Aguiar CRL; da Silva Júnior AH
    J Environ Sci (China); 2024 Jun; 140():123-145. PubMed ID: 38331495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of different textile fibers on characterization of dyeing wastewater and final effluent.
    Dos Santos RF; Ramlow H; Dolzan N; Machado RAF; de Aguiar CRL; Marangoni C
    Environ Monit Assess; 2018 Oct; 190(11):693. PubMed ID: 30382411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-mordants: a review.
    Benli H
    Environ Sci Pollut Res Int; 2024 Mar; 31(14):20714-20771. PubMed ID: 38396176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of colorants in nylon flock dyeing effluent.
    Fan Q; Hoskote S; Hou Y
    J Hazard Mater; 2004 Aug; 112(1-2):123-31. PubMed ID: 15225938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable natural coloring potential of bitter gourd (Momordica charantia L.) residues for cotton dyeing: innovative approach towards textile industry.
    Batool F; Adeel S; Iqbal N; Azeem M; Hussaan M
    Environ Sci Pollut Res Int; 2022 May; 29(23):34974-34983. PubMed ID: 35040061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on existing and emerging approaches for textile wastewater treatments: challenges and future perspectives.
    Kallawar GA; Bhanvase BA
    Environ Sci Pollut Res Int; 2024 Jan; 31(2):1748-1789. PubMed ID: 38055170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri.
    Wang C; Yediler A; Lienert D; Wang Z; Kettrup A
    Chemosphere; 2002 Jan; 46(2):339-44. PubMed ID: 11827294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Technical Textiles and Synthetic Nanofibers on Environmental Pollution.
    Aldalbahi A; El-Naggar ME; El-Newehy MH; Rahaman M; Hatshan MR; Khattab TA
    Polymers (Basel); 2021 Jan; 13(1):. PubMed ID: 33401538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent organic and inorganic pollutants in the effluents from the textile dyeing industries: Ecotoxicology appraisal via a battery of biotests.
    Methneni N; Morales-González JA; Jaziri A; Mansour HB; Fernandez-Serrano M
    Environ Res; 2021 May; 196():110956. PubMed ID: 33675797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of textile dyes on health and ecosystem: a review of structure, causes, and potential solutions.
    Islam T; Repon MR; Islam T; Sarwar Z; Rahman MM
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):9207-9242. PubMed ID: 36459315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-assisted sustainable exploration of cocklebur leaves (Xanthium strumarium L.) as a novel source of distinct yellow natural colorant for dyeing cotton fabric.
    Hussaan M; Raza A; Habib N; Adeel S; Iqbal N; Javed MT
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):42246-42254. PubMed ID: 36645587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on applications of liposomes in textile processing.
    Barani H; Montazer M
    J Liposome Res; 2008; 18(3):249-62. PubMed ID: 18770074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New process for conversion of hazardous industrial effluent of ceramic industry into nanostructured sodium carbonate and their application in textile industry.
    Dabas N; Yadav KK; Ganguli AK; Jha M
    J Environ Manage; 2019 Jun; 240():352-358. PubMed ID: 30953988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural waste materials containing chitin as adsorbents for textile dyestuffs: batch and continuous studies.
    Figueiredo SA; Loureiro JM; Boaventura RA
    Water Res; 2005 Oct; 39(17):4142-52. PubMed ID: 16140355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of textile auxiliaries on the biodegradation of dyehouse effluent in activated sludge.
    Arslan Alaton I; Insel G; Eremektar G; Germirli Babuna F; Orhon D
    Chemosphere; 2006 Mar; 62(9):1549-57. PubMed ID: 16098558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green chemistry methods in sulfur dyeing: application of various reducing D-sugars and analysis of the importance of optimum redox potential.
    Blackburn RS; Harvey A
    Environ Sci Technol; 2004 Jul; 38(14):4034-9. PubMed ID: 15298216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resource utilization in the sub-sectors of the textile industry: opportunities for sustainability.
    Kır A; Ozturk E; Yetis U; Kitis M
    Environ Sci Pollut Res Int; 2024 Apr; 31(17):25312-25328. PubMed ID: 38472579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient treatment of textile dyeing sludge by CO
    Wang M; Mao M; Zhang M; Wen G; Yang Q; Su B; Ren Q
    Waste Manag; 2019 May; 90():29-36. PubMed ID: 31088671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of low-purity Fenton reagents on toxicity of textile dyeing effluent to Daphnia magna.
    Na J; Yoo J; Nam G; Jung J
    Environ Sci Process Impacts; 2017 Sep; 19(9):1169-1175. PubMed ID: 28703816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.