BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31838702)

  • 1. Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N
    Garg N; Saroy K
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):3043-3064. PubMed ID: 31838702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative effectiveness of arbuscular mycorrhiza and polyamines in modulating ROS generation and ascorbate-glutathione cycle in Cajanus cajan under nickel stress.
    Saroy K; Garg N
    Environ Sci Pollut Res Int; 2021 Sep; 28(35):48872-48889. PubMed ID: 33929663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon and Rhizophagus irregularis: potential candidates for ameliorating negative impacts of arsenate and arsenite stress on growth, nutrient acquisition and productivity in Cajanus cajan (L.) Millsp. genotypes.
    Garg N; Kashyap L
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18520-18535. PubMed ID: 28646312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint effects of Si and mycorrhiza on the antioxidant metabolism of two pigeonpea genotypes under As (III) and (V) stress.
    Garg N; Kashyap L
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7821-7839. PubMed ID: 30680683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus cajan (L.) Millsp.
    Garg N; Bhandari P
    Int J Phytoremediation; 2012 Jan; 14(1):62-74. PubMed ID: 22567695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arbuscular mycorrhizae and silicon alleviate arsenic toxicity by enhancing soil nutrient availability, starch degradation and productivity in Cajanus cajan (L.) Millsp.
    Bhalla S; Garg N
    Mycorrhiza; 2021 Nov; 31(6):735-754. PubMed ID: 34669029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes.
    Garg N; Pandey R
    Mycorrhiza; 2015 Apr; 25(3):165-80. PubMed ID: 25155616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poor Competitiveness of
    Chalasani D; Basu A; Pullabhotla SVSRN; Jorrin B; Neal AL; Poole PS; Podile AR; Tkacz A
    mBio; 2021 Aug; 12(4):e0042321. PubMed ID: 34225488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classical Soybean (
    Alaswad AA; Oehrle NW; Krishnan HB
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30832430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative roles of Arbuscular Mycorrhizae in establishing a correlation between soil properties, carbohydrate utilization and yield in Cicer arietinum L. under As stress.
    Garg N; Cheema A
    Ecotoxicol Environ Saf; 2021 Jan; 207():111196. PubMed ID: 32890948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the dialogue between arbuscular mycorrhizal fungi and polyamines in plants.
    Liang SM; Zheng FL; Wu QS
    World J Microbiol Biotechnol; 2022 Jul; 38(9):159. PubMed ID: 35834138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils.
    Doherty JH; Ji B; Casper BB
    Environ Pollut; 2008 Feb; 151(3):593-8. PubMed ID: 17555852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler.
    Orłowska E; Przybyłowicz W; Orlowski D; Turnau K; Mesjasz-Przybyłowicz J
    Environ Pollut; 2011 Dec; 159(12):3730-8. PubMed ID: 21835516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation in nutrient acquisition strategies of arbuscular mycorrhizal fungi and plant roots in poor and heterogeneous soils of karst shrub ecosystems.
    Liang Y; Pan F; Jiang Z; Li Q; Pu J; Liu K
    BMC Plant Biol; 2022 Apr; 22(1):188. PubMed ID: 35410135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel remediation by AM-colonized sunflower.
    Ker K; Charest C
    Mycorrhiza; 2010 Aug; 20(6):399-406. PubMed ID: 20066443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil.
    Wani PA; Khan MS; Zaidi A
    Arch Environ Contam Toxicol; 2008 Jul; 55(1):33-42. PubMed ID: 18166984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress.
    Pandey R; Garg N
    Mycorrhiza; 2017 Oct; 27(7):669-682. PubMed ID: 28593465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress.
    Garg N; Bharti A
    Mycorrhiza; 2018 Nov; 28(8):727-746. PubMed ID: 30043257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa.
    Turnau K; Mesjasz-Przybylowicz J
    Mycorrhiza; 2003 Aug; 13(4):185-90. PubMed ID: 12938030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea.
    Shabani L; Sabzalian MR; Mostafavi pour S
    Mycorrhiza; 2016 Jan; 26(1):67-76. PubMed ID: 26041568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.