These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 31838901)
61. Relative cytotoxic potencies and cell death mechanisms of α1 -adrenoceptor antagonists in prostate cancer cell lines. Forbes A; Anoopkumar-Dukie S; Chess-Williams R; McDermott C Prostate; 2016 Jun; 76(8):757-66. PubMed ID: 26880388 [TBL] [Abstract][Full Text] [Related]
62. Identification of Phenazine-Based MEMO1 Small-Molecule Inhibitors: Virtual Screening, Fluorescence Polarization Validation, and Inhibition of Breast Cancer Migration. Labrecque CL; Hilton CN; Airas J; Blake A; Rubenstein KJ; Parish CA; Pollock JA ChemMedChem; 2021 Apr; 16(7):1163-1171. PubMed ID: 33332774 [TBL] [Abstract][Full Text] [Related]
63. Integrating virtual screening and biochemical experimental approach to identify potential anti-cancer agents from drug databank. Deka SJ; Roy A; Manna D; Trivedi V J Bioinform Comput Biol; 2018 Jun; 16(3):1850002. PubMed ID: 29566637 [TBL] [Abstract][Full Text] [Related]
64. Discovery of a potent p38α/MAPK14 kinase inhibitor: Synthesis, in vitro/in vivo biological evaluation, and docking studies. El-Gamal MI; Anbar HS; Tarazi H; Oh CH Eur J Med Chem; 2019 Dec; 183():111684. PubMed ID: 31520926 [TBL] [Abstract][Full Text] [Related]
65. Molecular modeling of p38α mitogen-activated protein kinase inhibitors through 3D-QSAR and molecular dynamics simulations. Chang HW; Chung FS; Yang CN J Chem Inf Model; 2013 Jul; 53(7):1775-86. PubMed ID: 23808966 [TBL] [Abstract][Full Text] [Related]
66. Synthesis and anti-neuroinflammatory activity of lactone benzoyl hydrazine and 2-nitro-1-phenyl-1h-indole derivatives as p38α MAPK inhibitors. Cheng B; Lin Y; Kuang M; Fang S; Gu Q; Xu J; Wang L Chem Biol Drug Des; 2015 Nov; 86(5):1121-30. PubMed ID: 25960125 [TBL] [Abstract][Full Text] [Related]
67. Small-molecule inhibitors of Wnt signaling pathway: towards novel anticancer therapeutics. Zheng S; Liu J; Wu Y; Huang TL; Wang G Future Med Chem; 2015; 7(18):2485-505. PubMed ID: 26670195 [TBL] [Abstract][Full Text] [Related]
68. Rational Design of a Potent Pan-Pim Kinases Inhibitor with a Rhodanine-Benzoimidazole Structure. Sawaguchi Y; Yamazaki R; Nishiyama Y; Sasai T; Mae M; Abe A; Yaegashi T; Nishiyama H; Matsuzaki T Anticancer Res; 2017 Aug; 37(8):4051-4057. PubMed ID: 28739687 [TBL] [Abstract][Full Text] [Related]
69. Computational Approaches Towards Kinases as Attractive Targets for Anticancer Drug Discovery and Development. Hameed R; Khan A; Khan S; Perveen S Anticancer Agents Med Chem; 2019; 19(5):592-598. PubMed ID: 30306880 [TBL] [Abstract][Full Text] [Related]
70. In silico discovery and validation of potent small-molecule inhibitors targeting the activation function 2 site of human oestrogen receptor α. Singh K; Munuganti RS; Leblanc E; Lin YL; Leung E; Lallous N; Butler M; Cherkasov A; Rennie PS Breast Cancer Res; 2015 Feb; 17(1):27. PubMed ID: 25848700 [TBL] [Abstract][Full Text] [Related]
71. Discovery of BAZ1A bromodomain inhibitors with the aid of virtual screening and activity evaluation. Yang Z; Zhou Y; Zhong L Bioorg Med Chem Lett; 2021 Feb; 33():127745. PubMed ID: 33333161 [TBL] [Abstract][Full Text] [Related]
72. Protoapigenone, a novel flavonoid, induces apoptosis in human prostate cancer cells through activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase 1/2. Chang HL; Wu YC; Su JH; Yeh YT; Yuan SS J Pharmacol Exp Ther; 2008 Jun; 325(3):841-9. PubMed ID: 18337475 [TBL] [Abstract][Full Text] [Related]
73. Novel titanocene anti-cancer drugs and their effect on apoptosis and the apoptotic pathway in prostate cancer cells. O'Connor K; Gill C; Tacke M; Rehmann FJ; Strohfeldt K; Sweeney N; Fitzpatrick JM; Watson RW Apoptosis; 2006 Jul; 11(7):1205-14. PubMed ID: 16699961 [TBL] [Abstract][Full Text] [Related]
74. Design, synthesis and activity of novel 2,6-disubstituted purine derivatives, potential small molecule inhibitors of signal transducer and activator of transcription 3. Wang X; He Q; Wu K; Guo T; Du X; Zhang H; Fang L; Zheng N; Zhang Q; Ye F Eur J Med Chem; 2019 Oct; 179():218-232. PubMed ID: 31254923 [TBL] [Abstract][Full Text] [Related]
75. 3,4-Diaryl-isoxazoles and -imidazoles as potent dual inhibitors of p38alpha mitogen activated protein kinase and casein kinase 1delta. Peifer C; Abadleh M; Bischof J; Hauser D; Schattel V; Hirner H; Knippschild U; Laufer S J Med Chem; 2009 Dec; 52(23):7618-30. PubMed ID: 19591487 [TBL] [Abstract][Full Text] [Related]
76. Naringenin-Induced Apoptotic Cell Death in Prostate Cancer Cells Is Mediated via the PI3K/AKT and MAPK Signaling Pathways. Lim W; Park S; Bazer FW; Song G J Cell Biochem; 2017 May; 118(5):1118-1131. PubMed ID: 27606834 [TBL] [Abstract][Full Text] [Related]
77. Identification of a Novel Inhibitory Allosteric Site in p38α. Gomez-Gutierrez P; Campos PM; Vega M; Perez JJ PLoS One; 2016; 11(11):e0167379. PubMed ID: 27898710 [TBL] [Abstract][Full Text] [Related]
78. In silico-in vitro discovery of untargeted kinase-inhibitor interactions from kinase-targeted therapies: A case study on the cancer MAPK signaling pathway. Meng L; Huang Z Comput Biol Chem; 2018 Aug; 75():196-204. PubMed ID: 29803964 [TBL] [Abstract][Full Text] [Related]
79. Non-immunosuppressive triazole-based small molecule induces anticancer activity against human hormone-refractory prostate cancers: the role in inhibition of PI3K/AKT/mTOR and c-Myc signaling pathways. Leu WJ; Swain ShP; Chan SH; Hsu JL; Liu SP; Chan ML; Yu CC; Hsu LC; Chou YL; Chang WL; Hou DR; Guh JH Oncotarget; 2016 Nov; 7(47):76995-77009. PubMed ID: 27769069 [TBL] [Abstract][Full Text] [Related]
80. Development of novel ACK1/TNK2 inhibitors using a fragment-based approach. Lawrence HR; Mahajan K; Luo Y; Zhang D; Tindall N; Huseyin M; Gevariya H; Kazi S; Ozcan S; Mahajan NP; Lawrence NJ J Med Chem; 2015 Mar; 58(6):2746-63. PubMed ID: 25699576 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]