These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3183932)

  • 1. In vitro evaluation of iris chafe protection afforded by hydrophilic surface modification of polymethylmethacrylate intraocular lenses.
    Hofmeister FM; Yalon MS; Iida S; Goldberg MD
    J Cataract Refract Surg; 1988 Sep; 14(5):514-9. PubMed ID: 3183932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraocular lens material evaluation by iris abrasion in vitro: a scanning electron microscope study.
    Burstein NL; Ding M; Pratt MV
    J Cataract Refract Surg; 1988 Sep; 14(5):520-5. PubMed ID: 3183933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects on the surrounding tissues and morphological changes of components after implantation of PMMA and heparin surface modified PMMA intraocular lens in rabbit eyes.
    Kim MS; Rhee SW
    Korean J Ophthalmol; 1990 Dec; 4(2):73-81. PubMed ID: 2092164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corneal endothelial protection by heparin and sodium hyaluronate surface coating of PMMA intraocular lenses.
    Fagerholm P; Koul S; Trocmé S
    Acta Ophthalmol Suppl (1985); 1987; 182():110-4. PubMed ID: 2837045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corneal endothelium cell adhesion on intraocular lenses in vitro.
    Arciola CR; Cenni E; Tarabusi C; Caramazza R; Pizzoferrato A
    J Appl Biomater; 1993; 4(3):249-52. PubMed ID: 10146308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the effect of polymethylmethacrylate and silicone intraocular lenses on rabbit corneal endothelium in vitro.
    Herzog WR; Peiffer RL
    J Cataract Refract Surg; 1987 Jul; 13(4):397-400. PubMed ID: 3625517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraocular lens damage to the endothelium of in vitro rabbit corneae: a specular and scanning electron microscopical study.
    Sherrard ES
    Trans Ophthalmol Soc U K (1962); 1983; 103 ( Pt 5)():565-76. PubMed ID: 6591599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of PMMA and silicone lens materials on normal rabbit corneal endothelium: an in vitro study.
    Kassar BS; Varnell ED
    J Am Intraocul Implant Soc; 1980 Oct; 6(4):344-6. PubMed ID: 7440374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of the biocompatibility of intraocular lenses.
    Majima K
    Ophthalmic Surg Lasers; 1996 Nov; 27(11):946-51. PubMed ID: 8938804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification of intraocular lenses to reduce corneal endothelial damage.
    Knight PM; Link WJ
    J Am Intraocul Implant Soc; 1979 Apr; 5(2):123-30. PubMed ID: 479004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of Nd:YAG microexplosions on heparin-coated PMMA intraocular lenses].
    Kohnen T; Dick B; Jacobi KW
    Ophthalmologe; 1995 Jun; 92(3):293-6. PubMed ID: 7655201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane plasma as a protective coating on intraocular lenses: an in vitro study.
    Badaro RM; Koziol JE; Peyman GA
    Int Ophthalmol; 1989 Sep; 13(5):357-60. PubMed ID: 2625384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of endothelial damage produced by control and surface modified poly(methyl methacrylate) intraocular lenses.
    Balyeat HD; Nordquist RE; Lerner MP; Gupta A
    J Cataract Refract Surg; 1989 Sep; 15(5):491-4. PubMed ID: 2810082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibrinous reaction on implanted intraocular lenses. A comparison of conventional PMMA and heparin surface modified lenses.
    Lundgren B; Selén G; Spångberg M; Härfstrand A
    J Cataract Refract Surg; 1992 May; 18(3):236-9. PubMed ID: 1593429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evaluating biological tolerance of PMMA, heparin-modified PMMA and hydrogel intraocular lenses using slit lamp microscopy].
    Amon M; Menapace R
    Klin Monbl Augenheilkd; 1992 Feb; 200(2):95-100. PubMed ID: 1578872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraocular PMMA lenses modified with surface-immobilized heparin: evaluation of biocompatibility in vitro and in vivo.
    Larsson R; Selén G; Björdklund H; Fagerholm P
    Biomaterials; 1989 Oct; 10(8):511-6. PubMed ID: 2605284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning electron microscopy of intraocular lenses that had been implanted in dogs.
    Gilger BC; Whitley RD; McLaughlin SA; Wright JC; Boosinger TR
    Am J Vet Res; 1993 Jul; 54(7):1183-7. PubMed ID: 8368618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relating the surface properties of intraocular lens materials to endothelial cell adhesion damage.
    Mateo NB; Ratner BD
    Invest Ophthalmol Vis Sci; 1989 May; 30(5):853-60. PubMed ID: 2722441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Condensation on polymethylmethacrylate, acrylic polymer, and silicone intraocular lenses after fluid-air exchange in rabbits.
    Hainsworth DP; Chen SN; Cox TA; Jaffe GJ
    Ophthalmology; 1996 Sep; 103(9):1410-8. PubMed ID: 8841299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compatibility of intraocular lenses with blood and connective tissue cells measured by cellular deposition and inflammatory response in vitro.
    Joo CK; Kim JH
    J Cataract Refract Surg; 1992 May; 18(3):240-6. PubMed ID: 1593430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.