These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Transcription and splicing dynamics during early Prudêncio P; Savisaar R; Rebelo K; Martinho RG; Carmo-Fonseca M RNA; 2022 Feb; 28(2):139-161. PubMed ID: 34667107 [TBL] [Abstract][Full Text] [Related]
5. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts. Sousa-Luís R; Dujardin G; Zukher I; Kimura H; Weldon C; Carmo-Fonseca M; Proudfoot NJ; Nojima T Mol Cell; 2021 May; 81(9):1935-1950.e6. PubMed ID: 33735606 [TBL] [Abstract][Full Text] [Related]
6. On the importance of being co-transcriptional. Neugebauer KM J Cell Sci; 2002 Oct; 115(Pt 20):3865-71. PubMed ID: 12244124 [TBL] [Abstract][Full Text] [Related]
8. The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Liang D; Tatomer DC; Luo Z; Wu H; Yang L; Chen LL; Cherry S; Wilusz JE Mol Cell; 2017 Dec; 68(5):940-954.e3. PubMed ID: 29174924 [TBL] [Abstract][Full Text] [Related]
9. Long-read sequencing of nascent RNA reveals coupling among RNA processing events. Herzel L; Straube K; Neugebauer KM Genome Res; 2018 Jul; 28(7):1008-1019. PubMed ID: 29903723 [TBL] [Abstract][Full Text] [Related]
10. Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing. Goldstrohm AC; Greenleaf AL; Garcia-Blanco MA Gene; 2001 Oct; 277(1-2):31-47. PubMed ID: 11602343 [TBL] [Abstract][Full Text] [Related]
11. Numerous recursive sites contribute to accuracy of splicing in long introns in flies. Pai AA; Paggi JM; Yan P; Adelman K; Burge CB PLoS Genet; 2018 Aug; 14(8):e1007588. PubMed ID: 30148878 [TBL] [Abstract][Full Text] [Related]
12. JUM is a computational method for comprehensive annotation-free analysis of alternative pre-mRNA splicing patterns. Wang Q; Rio DC Proc Natl Acad Sci U S A; 2018 Aug; 115(35):E8181-E8190. PubMed ID: 30104386 [TBL] [Abstract][Full Text] [Related]
13. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. Brody Y; Neufeld N; Bieberstein N; Causse SZ; Böhnlein EM; Neugebauer KM; Darzacq X; Shav-Tal Y PLoS Biol; 2011 Jan; 9(1):e1000573. PubMed ID: 21264352 [TBL] [Abstract][Full Text] [Related]
14. Exon junction complex proteins bind nascent transcripts independently of pre-mRNA splicing in Choudhury SR; Singh AK; McLeod T; Blanchette M; Jang B; Badenhorst P; Kanhere A; Brogna S Elife; 2016 Nov; 5():. PubMed ID: 27879206 [TBL] [Abstract][Full Text] [Related]
15. Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing. Carrocci TJ; Neugebauer KM Mol Cell; 2024 Oct; 84(19):3656-3666. PubMed ID: 39366353 [TBL] [Abstract][Full Text] [Related]
16. Fast ribozyme cleavage releases transcripts from RNA polymerase II and aborts co-transcriptional pre-mRNA processing. Fong N; Ohman M; Bentley DL Nat Struct Mol Biol; 2009 Sep; 16(9):916-22. PubMed ID: 19701200 [TBL] [Abstract][Full Text] [Related]
17. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse. Khodor YL; Menet JS; Tolan M; Rosbash M RNA; 2012 Dec; 18(12):2174-86. PubMed ID: 23097425 [TBL] [Abstract][Full Text] [Related]
18. Global Co-transcriptional Splicing in Arabidopsis and the Correlation with Splicing Regulation in Mature RNAs. Li S; Wang Y; Zhao Y; Zhao X; Chen X; Gong Z Mol Plant; 2020 Feb; 13(2):266-277. PubMed ID: 31759129 [TBL] [Abstract][Full Text] [Related]