These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31839935)

  • 1. Cooperative interactions between nano-antennas in a high-Q cavity for unidirectional light sources.
    Cognée KG; Doeleman HM; Lalanne P; Koenderink AF
    Light Sci Appl; 2019; 8():115. PubMed ID: 31839935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of Cooperative Purcell Enhancements in Antenna-Cavity Hybrids.
    Doeleman HM; Dieleman CD; Mennes C; Ehrler B; Koenderink AF
    ACS Nano; 2020 Sep; 14(9):12027-12036. PubMed ID: 32870669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unidirectional Enhanced Dipolar Emission with an Individual Dielectric Nanoantenna.
    Zhang T; Xu J; Deng ZL; Hu D; Qin F; Li X
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31003409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of suspended metal-dielectric-metal plasmonic nanostructures.
    Dong Z; Bosman M; Zhu D; Goh XM; Yang JK
    Nanotechnology; 2014 Apr; 25(13):135303. PubMed ID: 24598115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoantenna-Microcavity Hybrids with Highly Cooperative Plasmonic-Photonic Coupling.
    Liu JN; Huang Q; Liu KK; Singamaneni S; Cunningham BT
    Nano Lett; 2017 Dec; 17(12):7569-7577. PubMed ID: 29078049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Pérot cavity.
    Yang ZJ; Wang QQ; Lin HQ
    Nanoscale; 2012 Sep; 4(17):5308-11. PubMed ID: 22837062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid photonic-plasmonic nano-cavity with ultra-high Q/V.
    Zhang H; Liu YC; Wang C; Zhang N; Lu C
    Opt Lett; 2020 Sep; 45(17):4794-4797. PubMed ID: 32870859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonant light scattering from a single dielectric nano-antenna formed by electron beam-induced deposition.
    Lee EK; Song JH; Jeong KY; Kang JH; Park HG; Seo MK
    Sci Rep; 2015 May; 5():10400. PubMed ID: 25988729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules.
    Regmi R; Berthelot J; Winkler PM; Mivelle M; Proust J; Bedu F; Ozerov I; Begou T; Lumeau J; Rigneault H; García-Parajó MF; Bidault S; Wenger J; Bonod N
    Nano Lett; 2016 Aug; 16(8):5143-51. PubMed ID: 27399057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral emission and Purcell enhancement in a hybrid plasmonic-photonic microresonator.
    Cao QT; Chen YL; Xiao YF
    Light Sci Appl; 2020; 9():4. PubMed ID: 31934336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic antennas hybridized with dielectric waveguides.
    Bernal Arango F; Kwadrin A; Koenderink AF
    ACS Nano; 2012 Nov; 6(11):10156-67. PubMed ID: 23066710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of Plasmonic Chiral Radiative Local Density of States with Cathodoluminescence Nanoscopy.
    Zu S; Han T; Jiang M; Liu Z; Jiang Q; Lin F; Zhu X; Fang Z
    Nano Lett; 2019 Feb; 19(2):775-780. PubMed ID: 30596507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bound States in the Continuum in Anisotropic Plasmonic Metasurfaces.
    Liang Y; Koshelev K; Zhang F; Lin H; Lin S; Wu J; Jia B; Kivshar Y
    Nano Lett; 2020 Sep; 20(9):6351-6356. PubMed ID: 32479094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong coupling in hybrid metal-dielectric nanoresonators.
    Decker M; Pertsch T; Staude I
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2090):. PubMed ID: 28220004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relations between near-field enhancements and Purcell factors in hybrid nanostructures of plasmonic antennas and dielectric cavities.
    Tang XT; Ma L; You Y; Du XJ; Qiu H; Guan XH; He J; Yang ZJ
    Opt Express; 2024 May; 32(10):16746-16760. PubMed ID: 38858873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybridized nanocavities as single-polarized plasmonic antennas.
    Yanik AA; Adato R; Erramilli S; Altug H
    Opt Express; 2009 Nov; 17(23):20900-10. PubMed ID: 19997327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators.
    Bozhevolnyi SI; Søndergaard T
    Opt Express; 2007 Aug; 15(17):10869-77. PubMed ID: 19547444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas.
    Yang L; Wang H; Fang Y; Li Z
    ACS Nano; 2016 Jan; 10(1):1580-8. PubMed ID: 26700823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-mode plasmonic nanorod type antenna based on the concept of a trapped dipole.
    Panaretos AH; Werner DH
    Opt Express; 2015 Apr; 23(7):8298-309. PubMed ID: 25968668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.