BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 3184007)

  • 1. An in vitro physiological preparation of a vertebrate communicatory behavior: chirping in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1988 Aug; 163(4):445-58. PubMed ID: 3184007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular recording in the medullary pacemaker nucleus of the weakly electric fish, Apteronotus, during modulatory behaviors.
    Dye J; Heiligenberg W
    J Comp Physiol A; 1987 Aug; 161(2):187-200. PubMed ID: 3625572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential activation of glutamate receptor subtypes on a single class of cells enables a neural oscillator to produce distinct behaviors.
    Spiro JE
    J Neurophysiol; 1997 Aug; 78(2):835-47. PubMed ID: 9307117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics and stimulus-dependence of pacemaker control during behavioral modulations in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1987 Aug; 161(2):175-85. PubMed ID: 3625571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual prepacemaker neurons can modulate the pacemaker cycle of the gymnotiform electric fish, Eigenmannia.
    Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1988 Jan; 162(1):13-21. PubMed ID: 3351783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric interactions through chirping behavior in the weakly electric fish, Apteronotus leptorhynchus.
    Zupanc GK; Sîrbulescu RF; Nichols A; Ilies I
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Feb; 192(2):159-73. PubMed ID: 16247622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The control of pacemaker modulations for social communication in the weakly electric fish Sternopygus.
    Keller CH; Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1991 Oct; 169(4):441-50. PubMed ID: 1685751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Communication in the weakly electric fish Sternopygus macrurus. II. Behavioral test of conspecific EOD detection ability.
    Fleishman LJ; Zakon HH; Lemon WC
    J Comp Physiol A; 1992 Mar; 170(3):349-56. PubMed ID: 1593504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct mechanisms of modulation in a neuronal oscillator generate different social signals in the electric fish Hypopomus.
    Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1989 Oct; 165(6):731-41. PubMed ID: 2810147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK
    J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision of the pacemaker nucleus in a weakly electric fish: network versus cellular influences.
    Moortgat KT; Bullock TH; Sejnowski TJ
    J Neurophysiol; 2000 Feb; 83(2):971-83. PubMed ID: 10669509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological characterization of ionic currents that regulate the pacemaker rhythm in a weakly electric fish.
    Smith GT; Zakon HH
    J Neurobiol; 2000 Feb; 42(2):270-86. PubMed ID: 10640333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex recognition and neuronal coding of electric organ discharge waveform in the pulse-type weakly electric fish, Hypopomus occidentalis.
    Shumway CA; Zelick RD
    J Comp Physiol A; 1988 Aug; 163(4):465-78. PubMed ID: 3184009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mauthner cell-initiated electromotor behavior is mediated via NMDA and metabotropic glutamatergic receptors on medullary pacemaker neurons in a gymnotid fish.
    Curti S; Falconi A; Morales FR; Borde M
    J Neurosci; 1999 Oct; 19(20):9133-40. PubMed ID: 10516331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomical and functional organization of the prepacemaker nucleus in gymnotiform electric fish: the accommodation of two behaviors in one nucleus.
    Kawasaki M; Maler L; Rose GJ; Heiligenberg W
    J Comp Neurol; 1988 Oct; 276(1):113-31. PubMed ID: 2461396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptology of the medullary command (pacemaker) nucleus of the weakly electric fish (Apteronotus leptorhynchus) with particular reference to comparative aspects.
    Elekes K; Szabo T
    Exp Brain Res; 1985; 60(3):509-20. PubMed ID: 4076373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interruption of pacemaker signals by a diencephalic nucleus in the African electric fish, Gymnarchus niloticus.
    Zhang Y; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 May; 192(5):509-21. PubMed ID: 16450119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous modulations of the electric organ discharge in the weakly electric fish, Apteronotus leptorhynchus: a biophysical and behavioral analysis.
    Engler G; Fogarty CM; Banks JR; Zupanc GK
    J Comp Physiol A; 2000; 186(7-8):645-60. PubMed ID: 11016781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HRP labeling and ultrastructural localization of prepacemaker terminals within the medullary pacemaker nucleus of the weakly electric gymnotiform fish Apteronotus leptorhynchus.
    Szabo T; Heiligenberg W; Ravaille-Veron M
    J Comp Neurol; 1989 Jun; 284(2):169-73. PubMed ID: 2754033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.