These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 31840236)

  • 1. Thermal niche diversity and trophic redundancy drive neutral effects of warming on energy flux through a stream food web.
    Nelson D; Benstead JP; Huryn AD; Cross WF; Hood JM; Johnson PW; Junker JR; Gíslason GM; Ólafsson JS
    Ecology; 2020 Apr; 101(4):e02952. PubMed ID: 31840236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shifts in community size structure drive temperature invariance of secondary production in a stream-warming experiment.
    Nelson D; Benstead JP; Huryn AD; Cross WF; Hood JM; Johnson PW; Junker JR; Gíslason GM; Ólafsson JS
    Ecology; 2017 Jul; 98(7):1797-1806. PubMed ID: 28402586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple stressors shape invertebrate assemblages and reduce their trophic niche: A case study in a regulated stream.
    Dolédec S; Simon L; Blemus J; Rigal A; Robin J; Mermillod-Blondin F
    Sci Total Environ; 2021 Jun; 773():145061. PubMed ID: 33940713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation.
    Ullah H; Nagelkerken I; Goldenberg SU; Fordham DA
    PLoS Biol; 2018 Jan; 16(1):e2003446. PubMed ID: 29315309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy pathways modulate the resilience of stream invertebrate communities to drought.
    Nelson D; Busch MH; Kopp DA; Allen DC
    J Anim Ecol; 2021 Sep; 90(9):2053-2064. PubMed ID: 33782972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of trophic niche compression: Evidence from landscape disturbance.
    Burdon FJ; McIntosh AR; Harding JS
    J Anim Ecol; 2020 Mar; 89(3):730-744. PubMed ID: 31691281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Land use alters trophic redundancy and resource flow through stream food webs.
    Price EL; Sertić Perić M; Romero GQ; Kratina P
    J Anim Ecol; 2019 May; 88(5):677-689. PubMed ID: 30712255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental N and P additions relieve stoichiometric constraints on organic matter flows through five stream food webs.
    Demi LM; Benstead JP; Rosemond AD; Maerz JC
    J Anim Ecol; 2020 Jun; 89(6):1468-1481. PubMed ID: 32124431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hurricane disturbance drives trophic changes in neotropical mountain stream food webs.
    Gutiérrez-Fonseca PE; Pringle CM; Ramírez A; Gómez JE; García P
    Ecology; 2024 Jan; 105(1):e4202. PubMed ID: 37926483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. River food webs: an integrative approach to bottom-up flow webs, top-down impact webs, and trophic position.
    Benke AC
    Ecology; 2018 Jun; 99(6):1370-1381. PubMed ID: 29604060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aquatic food web expansion and trophic redundancy along the Rocky Mountain-Great Plains ecotone.
    Maitland BM; Rahel FJ
    Ecology; 2023 Jul; 104(7):e4103. PubMed ID: 37203414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen loadings affect trophic structure in stream food webs on the Tibetan Plateau, China.
    Zhang J; Xu J; Tan X; Zhang Q
    Sci Total Environ; 2022 Oct; 844():157018. PubMed ID: 35772539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient enrichment reduces constraints on material flows in a detritus-based food web.
    Cross WF; Wallace JB; Rosemond AD
    Ecology; 2007 Oct; 88(10):2563-75. PubMed ID: 18027759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fish introductions and light modulate food web fluxes in tropical streams: a whole-ecosystem experimental approach.
    Collins SM; Thomas SA; Heatherly T; MacNeill KL; Leduc AO; López-Sepulcre A; Lamphere BA; El-Sabaawi RW; Reznick DN; Pringle CM; Flecker AS
    Ecology; 2016 Nov; 97(11):3154-3166. PubMed ID: 27870030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem.
    Cross WF; Wallace JB; Rosemond AD; Eggert SL
    Ecology; 2006 Jun; 87(6):1556-65. PubMed ID: 16869431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental warming increases the importance of high-turnover energy channels in stream food webs.
    Junker JR; Cross WF; Hood JM; Benstead JP; Huryn AD; Nelson D; Ólafsson JS; Gíslason GM
    Ecology; 2024 Jun; 105(6):e4314. PubMed ID: 38710667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between climate warming, herbicides, and eutrophication in the aquatic food web.
    Wang T; Zhang P; Molinos JG; Xie J; Zhang H; Wang H; Xu X; Wang K; Feng M; Cheng H; Zhang M; Xu J
    J Environ Manage; 2023 Nov; 345():118753. PubMed ID: 37625285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraguild predation enhances biodiversity and functioning in complex food webs.
    Wang S; Brose U; Gravel D
    Ecology; 2019 Mar; 100(3):e02616. PubMed ID: 30636279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon.
    Cross WF; Baxter CV; Donner KC; Rosi-Marshall EJ; Kennedy TA; Hall RO; Kelly HA; Rogers RS
    Ecol Appl; 2011 Sep; 21(6):2016-33. PubMed ID: 21939041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosted food web productivity through ocean acidification collapses under warming.
    Goldenberg SU; Nagelkerken I; Ferreira CM; Ullah H; Connell SD
    Glob Chang Biol; 2017 Oct; 23(10):4177-4184. PubMed ID: 28447365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.