These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 31840269)
1. Visual enhancement of Cone-beam CT by use of CycleGAN. Kida S; Kaji S; Nawa K; Imae T; Nakamoto T; Ozaki S; Ohta T; Nozawa Y; Nakagawa K Med Phys; 2020 Mar; 47(3):998-1010. PubMed ID: 31840269 [TBL] [Abstract][Full Text] [Related]
2. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Liang X; Chen L; Nguyen D; Zhou Z; Gu X; Yang M; Wang J; Jiang S Phys Med Biol; 2019 Jun; 64(12):125002. PubMed ID: 31108465 [TBL] [Abstract][Full Text] [Related]
3. Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy. Gao L; Xie K; Wu X; Lu Z; Li C; Sun J; Lin T; Sui J; Ni X Radiat Oncol; 2021 Oct; 16(1):202. PubMed ID: 34649572 [TBL] [Abstract][Full Text] [Related]
4. Streaking artifact reduction for CBCT-based synthetic CT generation in adaptive radiotherapy. Gao L; Xie K; Sun J; Lin T; Sui J; Yang G; Ni X Med Phys; 2023 Feb; 50(2):879-893. PubMed ID: 36183234 [TBL] [Abstract][Full Text] [Related]
5. Combining physics-based models with deep learning image synthesis and uncertainty in intraoperative cone-beam CT of the brain. Zhang X; Sisniega A; Zbijewski WB; Lee J; Jones CK; Wu P; Han R; Uneri A; Vagdargi P; Helm PA; Luciano M; Anderson WS; Siewerdsen JH Med Phys; 2023 May; 50(5):2607-2624. PubMed ID: 36906915 [TBL] [Abstract][Full Text] [Related]
7. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT). Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275 [TBL] [Abstract][Full Text] [Related]
8. Cone-beam CT image quality improvement using Cycle-Deblur consistent adversarial networks (Cycle-Deblur GAN) for chest CT imaging in breast cancer patients. Tien HJ; Yang HC; Shueng PW; Chen JC Sci Rep; 2021 Jan; 11(1):1133. PubMed ID: 33441936 [TBL] [Abstract][Full Text] [Related]
9. CBCT correction using a cycle-consistent generative adversarial network and unpaired training to enable photon and proton dose calculation. Kurz C; Maspero M; Savenije MHF; Landry G; Kamp F; Pinto M; Li M; Parodi K; Belka C; van den Berg CAT Phys Med Biol; 2019 Nov; 64(22):225004. PubMed ID: 31610527 [TBL] [Abstract][Full Text] [Related]
10. Improving CBCT quality to CT level using deep learning with generative adversarial network. Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647 [TBL] [Abstract][Full Text] [Related]
11. Head and neck synthetic CT generated from ultra-low-dose cone-beam CT following Image Gently Protocol using deep neural network. Yuan N; Rao S; Chen Q; Sensoy L; Qi J; Rong Y Med Phys; 2022 May; 49(5):3263-3277. PubMed ID: 35229904 [TBL] [Abstract][Full Text] [Related]
12. A two-step method to improve image quality of CBCT with phantom-based supervised and patient-based unsupervised learning strategies. Liu Y; Chen X; Zhu J; Yang B; Wei R; Xiong R; Quan H; Liu Y; Dai J; Men K Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35354124 [No Abstract] [Full Text] [Related]
13. Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography. Harms J; Lei Y; Wang T; Zhang R; Zhou J; Tang X; Curran WJ; Liu T; Yang X Med Phys; 2019 Sep; 46(9):3998-4009. PubMed ID: 31206709 [TBL] [Abstract][Full Text] [Related]
14. Improvement of Image Quality of Cone-beam CT Images by Three-dimensional Generative Adversarial Network. Hase T; Nakao M; Imanishi K; Nakamura M; Matsuda T Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2843-2846. PubMed ID: 34891840 [TBL] [Abstract][Full Text] [Related]
15. Generating synthesized computed tomography from CBCT using a conditional generative adversarial network for head and neck cancer patients. Zhang Y; Ding SG; Gong XC; Yuan XX; Lin JF; Chen Q; Li JG Technol Cancer Res Treat; 2022; 21():15330338221085358. PubMed ID: 35262422 [No Abstract] [Full Text] [Related]
16. Synthetic CT generation from CBCT images via deep learning. Chen L; Liang X; Shen C; Jiang S; Wang J Med Phys; 2020 Mar; 47(3):1115-1125. PubMed ID: 31853974 [TBL] [Abstract][Full Text] [Related]
17. Dosimetric assessment of patient dose calculation on a deep learning-based synthesized computed tomography image for adaptive radiotherapy. Lemus OMD; Wang YF; Li F; Jambawalikar S; Horowitz DP; Xu Y; Wuu CS J Appl Clin Med Phys; 2022 Jul; 23(7):e13595. PubMed ID: 35332646 [TBL] [Abstract][Full Text] [Related]
18. A cycle generative adversarial network for improving the quality of four-dimensional cone-beam computed tomography images. Usui K; Ogawa K; Goto M; Sakano Y; Kyougoku S; Daida H Radiat Oncol; 2022 Apr; 17(1):69. PubMed ID: 35392947 [TBL] [Abstract][Full Text] [Related]
19. Fan beam CT image synthesis from cone beam CT image using nested residual UNet based conditional generative adversarial network. Joseph J; Biji I; Babu N; Pournami PN; Jayaraj PB; Puzhakkal N; Sabu C; Patel V Phys Eng Sci Med; 2023 Jun; 46(2):703-717. PubMed ID: 36943626 [TBL] [Abstract][Full Text] [Related]
20. Towards a fully automatic workflow for investigating the dynamics of lung cancer cachexia during radiotherapy using cone beam computed tomography. Daenen LHBA; van de Worp WRPH; Rezaeifar B; de Bruijn J; Qiu P; Webster JM; Peeters S; De Ruysscher D; Langen RCJ; Wolfs CJA; Verhaegen F Phys Med Biol; 2024 Oct; 69(20):. PubMed ID: 39299273 [No Abstract] [Full Text] [Related] [Next] [New Search]