These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31840465)

  • 1. [Effects of freeze-thaw cycles on aggregate stability of black soil].
    Jin WP; Fan HM; Liu B; Jiang YZ; Jiang Y; Ma RM
    Ying Yong Sheng Tai Xue Bao; 2019 Dec; 30(12):4195-4201. PubMed ID: 31840465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of freeze-thaw cycles on aggregate breakdown of typical black soil during transportation].
    Zhang X; Ma RM; Jia YF; Fan HM; Chu ZT
    Ying Yong Sheng Tai Xue Bao; 2024 May; 35(5):1275-1282. PubMed ID: 38886426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Winter nocturnal warming affects the freeze-thaw frequency, soil aggregate distribution, and the contents and decomposability of C and N in paddy fields.
    Tang S; Yuan P; Tawaraya K; Tokida T; Fukuoka M; Yoshimoto M; Sakai H; Hasegawa T; Xu X; Cheng W
    Sci Total Environ; 2022 Jan; 802():149870. PubMed ID: 34525703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of plantation on aggregate distribution and stability of lateritic red soil in south subtropical China].
    Lin LW; Deng YS; Wang JY; Yang GR; Jiang DH; Wang L
    Ying Yong Sheng Tai Xue Bao; 2020 Nov; 31(11):3647-3656. PubMed ID: 33300714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil aggregate stability and its response to overland flow in successive Eucalyptus plantations in subtropical China.
    Wang J; Deng Y; Li D; Liu Z; Wen L; Huang Z; Jiang D; Lu Y
    Sci Total Environ; 2022 Feb; 807(Pt 3):151000. PubMed ID: 34656574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research progress on the effects of freeze-thaw on soil physical and chemical properties and wind and water erosion].
    Sun BY; Li ZB; Xiao JB; Zhang LT; Ma B; Li JM; Cheng DB
    Ying Yong Sheng Tai Xue Bao; 2019 Jan; 30(1):337-347. PubMed ID: 30907557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of freeze-thaw on dissolved nitrogen pool, nitrogen transformation processes and diversity of bacterial community in temperate soils].
    Pu JH; Jiang N; Juan YH; Chen LJ
    Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):2893-2902. PubMed ID: 33345490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study of the freeze thaw characteristics of expansive soil slope models with different initial moisture contents.
    Yang Z; Lv J; Shi W; Jia C; Wang C; Hong Y; Ling X
    Sci Rep; 2021 Nov; 11(1):23177. PubMed ID: 34848825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloid-facilitated mobilization of cadmium: Comparison of spring freeze-thaw event and autumn freeze-thaw event.
    Hu NW; Yu HW; Wang QR; Zhu GP; Yang XT; Wang TY; Wang Y; Wang QY
    Sci Total Environ; 2022 Dec; 852():158467. PubMed ID: 36057305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of freeze-thaw and soil moisture on content and spectral structure properties of dissolved organic matter in forest soil leachates.].
    Kong YH; Zhu LF; Wu HH; Fu PQ; Xu XK
    Ying Yong Sheng Tai Xue Bao; 2019 Sep; 30(9):2903-2914. PubMed ID: 31529864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of freeze-thaw on bank soil mechanical properties and bank stability.
    Yang Z; Mou X; Ji H; Liang Z; Zhang J
    Sci Rep; 2024 Apr; 14(1):9808. PubMed ID: 38684836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloid-facilitated mobilization of metals by freeze-thaw cycles.
    Mohanty SK; Saiers JE; Ryan JN
    Environ Sci Technol; 2014 Jan; 48(2):977-84. PubMed ID: 24377325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-thaw cycles lead to enhanced colloid-facilitated Pb transport in a Chernozem soil.
    Wang Z; Zhang Y; Flury M; Zou H
    J Contam Hydrol; 2022 Dec; 251():104093. PubMed ID: 36265266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deterioration characteristics of cement-improved loess under dry-wet and freeze-thaw cycles.
    Jiang YJ; Ni CY; Sha HW; Li ZH; Cai LY
    PLoS One; 2021; 16(7):e0253199. PubMed ID: 34197469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Dynamic change of dissolved iron in wetland soil solutions responding to freeze-thaw cycles].
    Yu XF; Wang GP; Lü XG; Zou YC; Jiang M
    Huan Jing Ke Xue; 2010 May; 31(5):1387-94. PubMed ID: 20623881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of freeze-thaw cycles on distribution and speciation of heavy metals in pig manure.
    An S; Zhang F; Chen X; Gao M; Zhang X; Hu B; Li Y
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):8082-8090. PubMed ID: 31897986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of freeze-thaw events on the viability of Cryptosporidium parvum oocysts in soil.
    Kato S; Jenkins MB; Fogarty EA; Bowman DD
    J Parasitol; 2002 Aug; 88(4):718-22. PubMed ID: 12197120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil Water Contents Control the Responses of Dissolved Nitrogen Pools and Bacterial Communities to Freeze-Thaw in Temperate Soils.
    Jiang N; Juan Y; Tian L; Chen X; Sun W; Chen L
    Biomed Res Int; 2020; 2020():6867081. PubMed ID: 32258137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of freeze-thaw instability of aluminum hydroxycarbonate and magnesium hydroxide gels.
    Zapata MI; Feldkamp JR; Peck GE; White JL; Hem SL
    J Pharm Sci; 1984 Jan; 73(1):3-8. PubMed ID: 6694078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climatic variation and seed persistence: freeze-thaw cycles lower survival via the joint action of abiotic stress and fungal pathogens.
    Connolly BM; Orrock JL
    Oecologia; 2015 Oct; 179(2):609-16. PubMed ID: 26078006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.