BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31840510)

  • 1. Enhanced Production of 2-Hydroxyphenazine from Glycerol by a Two-Stage Fermentation Strategy in
    Yue SJ; Huang P; Li S; Jan M; Hu HB; Wang W; Zhang XH
    J Agric Food Chem; 2020 Jan; 68(2):561-566. PubMed ID: 31840510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine.
    Liu K; Hu H; Wang W; Zhang X
    Microb Cell Fact; 2016 Jul; 15(1):131. PubMed ID: 27470070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative metabolomics and transcriptomics analyses provide insights into the high-yield mechanism of phenazines biosynthesis in Pseudomonas chlororaphis GP72.
    Li S; Yue SJ; Huang P; Feng TT; Zhang HY; Yao RL; Wang W; Zhang XH; Hu HB
    J Appl Microbiol; 2022 Nov; 133(5):2790-2801. PubMed ID: 35870153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72.
    Huang L; Chen MM; Wang W; Hu HB; Peng HS; Xu YQ; Zhang XH
    Appl Microbiol Biotechnol; 2011 Jan; 89(1):169-77. PubMed ID: 20857290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18.
    Wan Y; Liu H; Xian M; Huang W
    Microb Cell Fact; 2021 Dec; 20(1):235. PubMed ID: 34965873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and Engineering of
    Liu WH; Yue SJ; Feng TT; Li S; Huang P; Hu HB; Wang W; Zhang XH
    J Agric Food Chem; 2021 Apr; 69(16):4778-4784. PubMed ID: 33848158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid quantitative analysis of phenazine-1-carboxylic acid and 2-hydroxyphenazine from fermentation culture of Pseudomonas chlororaphis GP72 by capillary zone electrophoresis.
    Liu HM; Zhang XH; Huang XQ; Cao CX; Xu YQ
    Talanta; 2008 Jul; 76(2):276-81. PubMed ID: 18585277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced biosynthesis of phenazine-1-carboxamide by Pseudomonas chlororaphis strains using statistical experimental designs.
    Peng H; Tan J; Bilal M; Wang W; Hu H; Zhang X
    World J Microbiol Biotechnol; 2018 Aug; 34(9):129. PubMed ID: 30094643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of glycerol utilization in Pseudomonas chlororaphis GP72 for enhancing phenazine-1-carboxylic acid production.
    Song C; Yue SJ; Liu WH; Zheng YF; Zhang CH; Feng TT; Hu HB; Wang W; Zhang XH
    World J Microbiol Biotechnol; 2020 Mar; 36(3):49. PubMed ID: 32157439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial Synthesis of Antibacterial Phenazine-1,6-dicarboxylic Acid and the Role of PhzG in
    Guo S; Wang Y; Bilal M; Hu H; Wang W; Zhang X
    J Agric Food Chem; 2020 Feb; 68(8):2373-2380. PubMed ID: 32013409
    [No Abstract]   [Full Text] [Related]  

  • 11. Metabolic Engineering of
    Li L; Li Z; Yao W; Zhang X; Wang R; Li P; Yang K; Wang T; Liu K
    J Agric Food Chem; 2020 Dec; 68(50):14832-14840. PubMed ID: 33287542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites.
    Shen X; Wang Z; Huang X; Hu H; Wang W; Zhang X
    BMC Genomics; 2017 Sep; 18(1):715. PubMed ID: 28893188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of trans-2,3-dihydro-3-hydroxyanthranilic acid by engineered Pseudomonas chlororaphis GP72.
    Hu H; Li Y; Liu K; Zhao J; Wang W; Zhang X
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6607-6613. PubMed ID: 28702795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine
    Guo S; Liu R; Wang W; Hu H; Li Z; Zhang X
    ACS Synth Biol; 2020 Apr; 9(4):883-892. PubMed ID: 32197042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of Antibacterial Questiomycin A in Metabolically Engineered
    Guo S; Hu H; Wang W; Bilal M; Zhang X
    J Agric Food Chem; 2022 Jun; 70(25):7742-7750. PubMed ID: 35708224
    [No Abstract]   [Full Text] [Related]  

  • 16. Reaction kinetics for the biocatalytic conversion of phenazine-1-carboxylic acid to 2-hydroxyphenazine.
    Chen M; Cao H; Peng H; Hu H; Wang W; Zhang X
    PLoS One; 2014; 9(6):e98537. PubMed ID: 24905009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo.
    Raio A; Reveglia P; Puopolo G; Cimmino A; Danti R; Evidente A
    Microbiol Res; 2017 Jun; 199():49-56. PubMed ID: 28454709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66.
    Guo S; Wang Y; Dai B; Wang W; Hu H; Huang X; Zhang X
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7165-7175. PubMed ID: 28871340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation.
    Selin C; Habibian R; Poritsanos N; Athukorala SN; Fernando D; de Kievit TR
    FEMS Microbiol Ecol; 2010 Jan; 71(1):73-83. PubMed ID: 19889032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reciprocal enhancement of gene expression between the phz and prn operon in Pseudomonas chlororaphis G05.
    Zhang B; Wang Y; Miao J; Lu Y; Lu R; Sun X; Luo W; Chi X; Feng Z; Ge Y
    J Basic Microbiol; 2018 Sep; 58(9):793-805. PubMed ID: 29995319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.