These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 31840841)
1. Biocorrosion inhibition of Cu70:Ni30 by Bacillus subtilis strain S1X and Pseudomonas aeruginosa strain ZK biofilms. Wadood HZ; Rajasekar A; Farooq A; Ting YP; Sabri AN J Basic Microbiol; 2020 Mar; 60(3):243-252. PubMed ID: 31840841 [TBL] [Abstract][Full Text] [Related]
2. Preliminary study of microbiologically influenced corrosion by Pseudomonas aeruginosa on high Chromium white iron. Tan C; Elumalai NK; Krishnan KN PLoS One; 2024; 19(8):e0306164. PubMed ID: 39163379 [TBL] [Abstract][Full Text] [Related]
3. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm. Li H; Zhou E; Zhang D; Xu D; Xia J; Yang C; Feng H; Jiang Z; Li X; Gu T; Yang K Sci Rep; 2016 Feb; 6():20190. PubMed ID: 26846970 [TBL] [Abstract][Full Text] [Related]
4. Effect of Bacillus subtilis on corrosion behavior of 10MnNiCrCu steel in marine environment. Wang YS; Liu L; Fu Q; Sun J; An ZY; Ding R; Li Y; Zhao XD Sci Rep; 2020 Apr; 10(1):5744. PubMed ID: 32238880 [TBL] [Abstract][Full Text] [Related]
5. Microbiologically influenced corrosion: looking to the future. Videla HA; Herrera LK Int Microbiol; 2005 Sep; 8(3):169-80. PubMed ID: 16200495 [TBL] [Abstract][Full Text] [Related]
6. Synergistic action of Bacillus subtilis, Escherichia coli and Shewanella putrefaciens along with Pseudomonas putida on inhibiting mild steel against oxygen corrosion. Suma MS; Basheer R; Sreelekshmy BR; Riyas AH; Bhagya TC; Sha MA; Shibli SMA Appl Microbiol Biotechnol; 2019 Jul; 103(14):5891-5905. PubMed ID: 31104102 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of Syzygium aromaticum aqueous extract as an eco-friendly inhibitor for microbiologically influenced corrosion of carbon steel in oil reservoir environment. Parthipan P; AlSalhi MS; Devanesan S; Rajasekar A Bioprocess Biosyst Eng; 2021 Jul; 44(7):1441-1452. PubMed ID: 33710453 [TBL] [Abstract][Full Text] [Related]
8. The inhibition effects of Cu and Ni alloying elements on corrosion of HSLA steel influenced by Halomonas titanicae. Wang Y; Wu J; Zhang D; Li E; Zhu L Bioelectrochemistry; 2021 Oct; 141():107884. PubMed ID: 34293553 [TBL] [Abstract][Full Text] [Related]
9. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. Jia R; Yang D; Xu D; Gu T Bioelectrochemistry; 2017 Dec; 118():38-46. PubMed ID: 28715664 [TBL] [Abstract][Full Text] [Related]
10. Corrosion of Pseudomonas aeruginosa toward a Cu-Zn-Ni alloy inhibited by the simulative tidal region. Li C; Wu J; Wang P; Zhang D; Zhu L; Gao Y; Wang W Environ Sci Pollut Res Int; 2024 Jan; 31(3):3628-3640. PubMed ID: 38085474 [TBL] [Abstract][Full Text] [Related]
11. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm. Xia J; Yang C; Xu D; Sun D; Nan L; Sun Z; Li Q; Gu T; Yang K Biofouling; 2015; 31(6):481-92. PubMed ID: 26194639 [TBL] [Abstract][Full Text] [Related]
12. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm. Xu D; Xia J; Zhou E; Zhang D; Li H; Yang C; Li Q; Lin H; Li X; Yang K Bioelectrochemistry; 2017 Feb; 113():1-8. PubMed ID: 27578208 [TBL] [Abstract][Full Text] [Related]
13. Surface functionalization of Cu-Ni alloys via grafting of a bactericidal polymer for inhibiting biocorrosion by Desulfovibrio desulfuricans in anaerobic seawater. Yuan SJ; Liu CK; Pehkonen SO; Bai RB; Neoh KG; Ting YP; Kang ET Biofouling; 2009; 25(2):109-25. PubMed ID: 19021016 [TBL] [Abstract][Full Text] [Related]
14. The study of marine corrosion of copper alloys in chlorinated condenser cooling circuits: the role of microbiological components. Carvalho ML; Doma J; Sztyler M; Beech I; Cristiani P Bioelectrochemistry; 2014 Jun; 97():2-6. PubMed ID: 24411305 [TBL] [Abstract][Full Text] [Related]
15. Pseudomonas aeruginosa-accelerated corrosion of Mo-bearing low-alloy steel through molybdenum-mediating chemotaxis and motility. Guo Z; Chai Z; Liu T; Gao S; Hui X; Zhang C; Guo N; Dong L Bioelectrochemistry; 2022 Apr; 144():108047. PubMed ID: 35007894 [TBL] [Abstract][Full Text] [Related]
16. Relationship between microstructure, cytotoxicity and corrosion properties of a Cu-Al-Ni shape memory alloy. Colić M; Rudolf R; Stamenković D; Anzel I; Vucević D; Jenko M; Lazić V; Lojen G Acta Biomater; 2010 Jan; 6(1):308-17. PubMed ID: 19540942 [TBL] [Abstract][Full Text] [Related]
17. Investigation of microbiologically influenced corrosion inhibition of 304 stainless steel by D-cysteine in the presence of Pseudomonas aeruginosa. Qian HC; Chang WW; Liu WL; Cui TY; Li Z; Guo DW; Kwok CT; Tam LM; Zhang DW Bioelectrochemistry; 2022 Feb; 143():107953. PubMed ID: 34583211 [TBL] [Abstract][Full Text] [Related]
18. Study of pitting corrosion inhibition effect on aluminum alloy in seawater by biomineralized film. Shen Y; Dong Y; Yang Y; Li Q; Zhu H; Zhang W; Dong L; Yin Y Bioelectrochemistry; 2020 Apr; 132():107408. PubMed ID: 31816577 [TBL] [Abstract][Full Text] [Related]
19. Anaerobic biodegradation of biofuels and their impact on the corrosion of a Cu-Ni alloy in marine environments. Liang R; Aydin E; Le Borgne S; Sunner J; Duncan KE; Suflita JM Chemosphere; 2018 Mar; 195():427-436. PubMed ID: 29274988 [TBL] [Abstract][Full Text] [Related]
20. Effect of copper on the localized corrosion resistance of Ni-Ti shape memory alloy. Rondelli G; Vicentini B Biomaterials; 2002 Feb; 23(3):639-44. PubMed ID: 11771683 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]