These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 31840994)
1. Red, Orange, Green: Light- and Temperature-Dependent Color Tuning in a Cyanobacteriochrome. Buhrke D; Battocchio G; Wilkening S; Blain-Hartung M; Baumann T; Schmitt FJ; Friedrich T; Mroginski MA; Hildebrandt P Biochemistry; 2020 Feb; 59(4):509-519. PubMed ID: 31840994 [TBL] [Abstract][Full Text] [Related]
2. Structural elements regulating the photochromicity in a cyanobacteriochrome. Xu X; Port A; Wiebeler C; Zhao KH; Schapiro I; Gärtner W Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2432-2440. PubMed ID: 31964827 [TBL] [Abstract][Full Text] [Related]
3. Red-shifted red/green-type cyanobacteriochrome AM1_1870g3 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina. Narikawa R; Fushimi K; Ni-Ni-Win ; Ikeuchi M Biochem Biophys Res Commun; 2015 May; 461(2):390-5. PubMed ID: 25892514 [TBL] [Abstract][Full Text] [Related]
4. A biliverdin-binding cyanobacteriochrome from the chlorophyll d-bearing cyanobacterium Acaryochloris marina. Narikawa R; Nakajima T; Aono Y; Fushimi K; Enomoto G; Ni-Ni-Win ; Itoh S; Sato M; Ikeuchi M Sci Rep; 2015 Jan; 5():7950. PubMed ID: 25609645 [TBL] [Abstract][Full Text] [Related]
5. Teal-light absorbing cyanobacterial phytochrome superfamily provides insights into the diverse mechanisms of spectral tuning and facilitates the engineering of photoreceptors for optogenetic tools. Yang HW; Kim YW; Villafani Y; Song JY; Park YI Int J Biol Macromol; 2024 Aug; 274(Pt 2):133407. PubMed ID: 38925190 [TBL] [Abstract][Full Text] [Related]
6. Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Hydrophobic Pocket for the C15-E,anti Chromophore in the Photoproduct. Rockwell NC; Martin SS; Lim S; Lagarias JC; Ames JB Biochemistry; 2015 Jun; 54(24):3772-83. PubMed ID: 25989712 [TBL] [Abstract][Full Text] [Related]
7. Chromophore structure of cyanobacterial phytochrome Cph1 in the Pr state: reconciling structural and spectroscopic data by QM/MM calculations. Mroginski MA; von Stetten D; Escobar FV; Strauss HM; Kaminski S; Scheerer P; Günther M; Murgida DH; Schmieder P; Bongards C; Gärtner W; Mailliet J; Hughes J; Essen LO; Hildebrandt P Biophys J; 2009 May; 96(10):4153-63. PubMed ID: 19450486 [TBL] [Abstract][Full Text] [Related]
8. On the Role of a Conserved Tryptophan in the Chromophore Pocket of Cyanobacteriochrome. Blain-Hartung M; Johannes von Sass G; Plaickner J; Katz S; Tu Hoang O; Andrea Mroginski M; Esser N; Budisa N; Forest KT; Hildebrandt P J Mol Biol; 2024 Mar; 436(5):168227. PubMed ID: 37544357 [TBL] [Abstract][Full Text] [Related]
9. Photophysical diversity of two novel cyanobacteriochromes with phycocyanobilin chromophores: photochemistry and dark reversion kinetics. Chen Y; Zhang J; Luo J; Tu JM; Zeng XL; Xie J; Zhou M; Zhao JQ; Scheer H; Zhao KH FEBS J; 2012 Jan; 279(1):40-54. PubMed ID: 22008418 [TBL] [Abstract][Full Text] [Related]
10. The impact of chromophore choice on the assembly kinetics and primary photochemistry of a red/green cyanobacteriochrome. Buhrke D Phys Chem Chem Phys; 2021 Sep; 23(37):20867-20874. PubMed ID: 34374395 [TBL] [Abstract][Full Text] [Related]
11. Cyanochromes are blue/green light photoreversible photoreceptors defined by a stable double cysteine linkage to a phycoviolobilin-type chromophore. Ulijasz AT; Cornilescu G; von Stetten D; Cornilescu C; Velazquez Escobar F; Zhang J; Stankey RJ; Rivera M; Hildebrandt P; Vierstra RD J Biol Chem; 2009 Oct; 284(43):29757-72. PubMed ID: 19671704 [TBL] [Abstract][Full Text] [Related]
12. Red/green cyanobacteriochromes acquire isomerization from phycocyanobilin to phycoviolobilin. Hoshino H; Miyake K; Fushimi K; Narikawa R Protein Sci; 2024 Aug; 33(8):e5132. PubMed ID: 39072823 [TBL] [Abstract][Full Text] [Related]
13. Molecular characterization of D Hasegawa M; Fushimi K; Miyake K; Nakajima T; Oikawa Y; Enomoto G; Sato M; Ikeuchi M; Narikawa R J Biol Chem; 2018 Feb; 293(5):1713-1727. PubMed ID: 29229775 [TBL] [Abstract][Full Text] [Related]
14. Chromophorylation of cyanobacteriochrome Slr1393 from He Q; Tang QY; Sun YF; Zhou M; Gärtner W; Zhao KH J Biol Chem; 2018 Nov; 293(46):17705-17715. PubMed ID: 30242127 [TBL] [Abstract][Full Text] [Related]
15. A Red/Green Cyanobacteriochrome Sustains Its Color Despite a Change in the Bilin Chromophore's Protonation State. Song C; Velazquez Escobar F; Xu XL; Narikawa R; Ikeuchi M; Siebert F; Gärtner W; Matysik J; Hildebrandt P Biochemistry; 2015 Sep; 54(38):5839-48. PubMed ID: 26335286 [TBL] [Abstract][Full Text] [Related]
16. A far-red cyanobacteriochrome lineage specific for verdins. Moreno MV; Rockwell NC; Mora M; Fisher AJ; Lagarias JC Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27962-27970. PubMed ID: 33106421 [TBL] [Abstract][Full Text] [Related]
17. Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Rockwell NC; Martin SS; Gulevich AG; Lagarias JC Biochemistry; 2012 Feb; 51(7):1449-63. PubMed ID: 22279972 [TBL] [Abstract][Full Text] [Related]
18. 1H, 13C, and 15N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state. Lim S; Yu Q; Rockwell NC; Martin SS; Lagarias JC; Ames JB Biomol NMR Assign; 2016 Apr; 10(1):157-61. PubMed ID: 26537963 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen-Bond Network Determines the Early Photoisomerization Processes of Cph1 and AnPixJ Phytochromes. Liu XY; Zhang TS; Fang Q; Fang WH; González L; Cui G Angew Chem Int Ed Engl; 2021 Aug; 60(34):18688-18693. PubMed ID: 34097335 [TBL] [Abstract][Full Text] [Related]
20. Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE. Nagae T; Unno M; Koizumi T; Miyanoiri Y; Fujisawa T; Masui K; Kamo T; Wada K; Eki T; Ito Y; Hirose Y; Mishima M Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]