These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31840995)

  • 1. Post-Translational Modifications at the Coarse-Grained Level with the SIRAH Force Field.
    Garay PG; Barrera EE; Pantano S
    J Chem Inf Model; 2020 Feb; 60(2):964-973. PubMed ID: 31840995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SIRAH 2.0 Force Field: Altius, Fortius, Citius.
    Machado MR; Barrera EE; Klein F; Sóñora M; Silva S; Pantano S
    J Chem Theory Comput; 2019 Apr; 15(4):2719-2733. PubMed ID: 30810317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SIRAH force field: A suite for simulations of complex biological systems at the coarse-grained and multiscale levels.
    Klein F; Soñora M; Helene Santos L; Nazareno Frigini E; Ballesteros-Casallas A; Rodrigo Machado M; Pantano S
    J Struct Biol; 2023 Sep; 215(3):107985. PubMed ID: 37331570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIRAH Late Harvest: Coarse-Grained Models for Protein Glycosylation.
    Garay PG; Machado MR; Verli H; Pantano S
    J Chem Theory Comput; 2024 Jan; 20(2):963-976. PubMed ID: 38175797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarse-Grained Parameters for Divalent Cations within the SIRAH Force Field.
    Klein F; Cáceres D; Carrasco MA; Tapia JC; Caballero J; Alzate-Morales J; Pantano S
    J Chem Inf Model; 2020 Aug; 60(8):3935-3943. PubMed ID: 32687361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling DMPC lipid membranes with SIRAH force-field.
    Barrera EE; Frigini EN; Porasso RD; Pantano S
    J Mol Model; 2017 Aug; 23(9):259. PubMed ID: 28799119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CGMD Platform: Integrated Web Servers for the Preparation, Running, and Analysis of Coarse-Grained Molecular Dynamics Simulations.
    Marchetto A; Si Chaib Z; Rossi CA; Ribeiro R; Pantano S; Rossetti G; Giorgetti A
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33333836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fat SIRAH: Coarse-Grained Phospholipids To Explore Membrane-Protein Dynamics.
    Barrera EE; Machado MR; Pantano S
    J Chem Theory Comput; 2019 Oct; 15(10):5674-5688. PubMed ID: 31433946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIRAH tools: mapping, backmapping and visualization of coarse-grained models.
    Machado MR; Pantano S
    Bioinformatics; 2016 May; 32(10):1568-70. PubMed ID: 26773132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIRAH: a structurally unbiased coarse-grained force field for proteins with aqueous solvation and long-range electrostatics.
    Darré L; Machado MR; Brandner AF; González HC; Ferreira S; Pantano S
    J Chem Theory Comput; 2015 Feb; 11(2):723-39. PubMed ID: 26575407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TMFF-A Two-Bead Multipole Force Field for Coarse-Grained Molecular Dynamics Simulation of Protein.
    Li M; Liu F; Zhang JZ
    J Chem Theory Comput; 2016 Dec; 12(12):6147-6156. PubMed ID: 27782390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring DNA dynamics within oligonucleosomes with coarse-grained simulations: SIRAH force field extension for protein-DNA complexes.
    Brandner A; Schüller A; Melo F; Pantano S
    Biochem Biophys Res Commun; 2018 Mar; 498(2):319-326. PubMed ID: 28958932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites.
    Rzepiela AJ; Louhivuori M; Peter C; Marrink SJ
    Phys Chem Chem Phys; 2011 Jun; 13(22):10437-48. PubMed ID: 21494747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From quantum to subcellular scales: multi-scale simulation approaches and the SIRAH force field.
    Machado MR; Zeida A; Darré L; Pantano S
    Interface Focus; 2019 Jun; 9(3):20180085. PubMed ID: 31065347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic framework for molecular dynamics simulations of protein post-translational modifications.
    Petrov D; Margreitter C; Grandits M; Oostenbrink C; Zagrovic B
    PLoS Comput Biol; 2013; 9(7):e1003154. PubMed ID: 23874192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The automated optimisation of a coarse-grained force field using free energy data.
    Caceres-Delpiano J; Wang LP; Essex JW
    Phys Chem Chem Phys; 2021 Nov; 23(43):24842-24851. PubMed ID: 34723311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Martini 3 Force Field Parameters for Protein Lipidation Post-Translational Modifications.
    Koukos PI; Dehghani-Ghahnaviyeh S; Velez-Vega C; Manchester J; Tieleman DP; Duca JS; Souza PCT; Cournia Z
    J Chem Theory Comput; 2023 Dec; 19(23):8901-8918. PubMed ID: 38019969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-translational modifications induce significant yet not extreme changes to protein structure.
    Xin F; Radivojac P
    Bioinformatics; 2012 Nov; 28(22):2905-13. PubMed ID: 22947645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vienna-PTM web server: a toolkit for MD simulations of protein post-translational modifications.
    Margreitter C; Petrov D; Zagrovic B
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W422-6. PubMed ID: 23703210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Necessity of high-resolution for coarse-grained modeling of flexible proteins.
    Jia Z; Chen J
    J Comput Chem; 2016 Jul; 37(18):1725-33. PubMed ID: 27130454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.