These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31840998)

  • 1. Multivalent Cation-Induced Actuation of DNA-Mediated Colloidal Superlattices.
    Samanta D; Iscen A; Laramy CR; Ebrahimi SB; Bujold KE; Schatz GC; Mirkin CA
    J Am Chem Soc; 2019 Dec; 141(51):19973-19977. PubMed ID: 31840998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloidal crystal engineering with metal-organic framework nanoparticles and DNA.
    Wang S; Park SS; Buru CT; Lin H; Chen PC; Roth EW; Farha OK; Mirkin CA
    Nat Commun; 2020 May; 11(1):2495. PubMed ID: 32427872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-Responsive Nanoparticle Superlattices with Tunable DNA Bonds.
    Zhu J; Kim Y; Lin H; Wang S; Mirkin CA
    J Am Chem Soc; 2018 Apr; 140(15):5061-5064. PubMed ID: 29624374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Crystals.
    Mason JA; Laramy CR; Lai CT; O'Brien MN; Lin QY; Dravid VP; Schatz GC; Mirkin CA
    J Am Chem Soc; 2016 Jul; 138(28):8722-5. PubMed ID: 27402303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating the Bond Strength of DNA-Nanoparticle Superlattices.
    Seo SE; Wang MX; Shade CM; Rouge JL; Brown KA; Mirkin CA
    ACS Nano; 2016 Feb; 10(2):1771-9. PubMed ID: 26699102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Repulsion in Colloidal Crystal Engineering with DNA.
    Seo SE; Li T; Senesi AJ; Mirkin CA; Lee B
    J Am Chem Soc; 2017 Nov; 139(46):16528-16535. PubMed ID: 29063768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open-channel metal particle superlattices.
    Li Y; Zhou W; Tanriover I; Hadibrata W; Partridge BE; Lin H; Hu X; Lee B; Liu J; Dravid VP; Aydin K; Mirkin CA
    Nature; 2022 Nov; 611(7937):695-701. PubMed ID: 36289344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using DNA to Control the Mechanical Response of Nanoparticle Superlattices.
    Lewis DJ; Carter DJD; Macfarlane RJ
    J Am Chem Soc; 2020 Nov; 142(45):19181-19188. PubMed ID: 33140957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Significance of Multivalent Bonding Motifs and "Bond Order" in DNA-Directed Nanoparticle Crystallization.
    Thaner RV; Eryazici I; Macfarlane RJ; Brown KA; Lee B; Nguyen ST; Mirkin CA
    J Am Chem Soc; 2016 May; 138(19):6119-22. PubMed ID: 27148838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and theoretical studies of the colloidal stability of nanoparticles-a general interpretation based on stability maps.
    Segets D; Marczak R; Schäfer S; Paula C; Gnichwitz JF; Hirsch A; Peukert W
    ACS Nano; 2011 Jun; 5(6):4658-69. PubMed ID: 21545143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica.
    Kim KM; Kim HM; Lee WJ; Lee CW; Kim TI; Lee JK; Jeong J; Paek SM; Oh JM
    Int J Nanomedicine; 2014; 9 Suppl 2(Suppl 2):29-40. PubMed ID: 25565824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular and Chemically Responsive Oligonucleotide "Bonds" in Nanoparticle Superlattices.
    Barnaby SN; Thaner RV; Ross MB; Brown KA; Schatz GC; Mirkin CA
    J Am Chem Soc; 2015 Oct; 137(42):13566-71. PubMed ID: 26465067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitutable nanoparticle superlattices.
    Radha B; Senesi AJ; O'Brien MN; Wang MX; Auyeung E; Lee B; Mirkin CA
    Nano Lett; 2014; 14(4):2162-7. PubMed ID: 24641553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programming of Supercrystals Using Replicable DNA-Functionalized Colloids.
    Sun X; Hua W; Liu X; Jin J; Zhang J; Tian J; Zheng B; Jiang W; Yao D; Liang H
    Angew Chem Int Ed Engl; 2024 May; 63(22):e202403492. PubMed ID: 38482742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling structure and porosity in catalytic nanoparticle superlattices with DNA.
    Auyeung E; Morris W; Mondloch JE; Hupp JT; Farha OK; Mirkin CA
    J Am Chem Soc; 2015 Feb; 137(4):1658-62. PubMed ID: 25611764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of charge asymmetry and charge screening on structure of superlattices formed by oppositely charged colloidal particles.
    Pavaskar G; Sharma S; Punnathanam SN
    J Chem Phys; 2012 Apr; 136(13):134506. PubMed ID: 22482571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arrays of Colloidal Single Crystals Engineered with DNA in Lithographically Defined Microwells.
    Wong AM; Je K; Zheng CY; Jibril L; Miao Z; Glotzer SC; Mirkin CA
    Nano Lett; 2023 Jan; 23(1):116-123. PubMed ID: 36541890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programming Colloidal Crystal Habit with Anisotropic Nanoparticle Building Blocks and DNA Bonds.
    O'Brien MN; Lin HX; Girard M; Olvera de la Cruz M; Mirkin CA
    J Am Chem Soc; 2016 Nov; 138(44):14562-14565. PubMed ID: 27792331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Recognition in the Colloidal World.
    Elacqua E; Zheng X; Shillingford C; Liu M; Weck M
    Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth dynamics for DNA-guided nanoparticle crystallization.
    Dhakal S; Kohlstedt KL; Schatz GC; Mirkin CA; Olvera de la Cruz M
    ACS Nano; 2013 Dec; 7(12):10948-59. PubMed ID: 24274629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.