These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31841343)

  • 1. Ranking the Drop-Weight Impact Sensitivity of Common Explosives Using Arrhenius Chemical Rates Computed from Quantum Molecular Dynamics Simulations.
    Cawkwell MJ; Manner VW
    J Phys Chem A; 2020 Jan; 124(1):74-81. PubMed ID: 31841343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Ignition Sites for the Explosives 3,3'-Diamino-4,4'-azoxyfurazan (DAAF) and 1,3,5,7-Tetranitro-1,3,5,7-tetrazoctane (HMX) Using Crush Gun Impact Testing.
    Lease N; Holmes MD; Englert-Erickson MA; Kay LM; Francois EG; Manner VW
    ACS Mater Au; 2021 Nov; 1(2):116-129. PubMed ID: 36855395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frictional properties of single crystals HMX, RDX and PETN explosives.
    Wu YQ; Huang FL
    J Hazard Mater; 2010 Nov; 183(1-3):324-33. PubMed ID: 20688432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Metal Film Thickness on Ignition of Organic Explosives with a Laser Pulse.
    Khaneft AV; Dolgachev VA; Rybin SA
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31888210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased handling sensitivity of molten erythritol tetranitrate (ETN).
    Lease N; Kay L; Chavez DE; Robbins D; Manner VW
    J Hazard Mater; 2019 Apr; 367():546-549. PubMed ID: 30641424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying the Molecular Properties that Drive Explosive Sensitivity in a Series of Nitrate Esters.
    Lease N; Klamborowski LM; Perriot R; Cawkwell MJ; Manner VW
    J Phys Chem Lett; 2022 Oct; 13(40):9422-9428. PubMed ID: 36191261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of explosives by positive corona discharge ion mobility spectrometry.
    Tabrizchi M; Ilbeigi V
    J Hazard Mater; 2010 Apr; 176(1-3):692-6. PubMed ID: 20004055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep ultraviolet resonance Raman excitation enables explosives detection.
    Tuschel DD; Mikhonin AV; Lemoff BE; Asher SA
    Appl Spectrosc; 2010 Apr; 64(4):425-32. PubMed ID: 20412628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sublimation kinetics and diffusion coefficients of TNT, PETN, and RDX in air by thermogravimetry.
    Hikal WM; Weeks BL
    Talanta; 2014 Jul; 125():24-8. PubMed ID: 24840410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives.
    Mei Z; An Q; Zhao FQ; Xu SY; Ju XH
    Phys Chem Chem Phys; 2018 Nov; 20(46):29341-29350. PubMed ID: 30444501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Integrated Experimental and Modeling Approach for Assessing High-Temperature Decomposition Kinetics of Explosives.
    Manner VW; Cawkwell MJ; Spielvogel KD; Tasker DG; Rose JW; Aloi M; Tucker R; Moore JD; Campbell MC; Aslam TD
    J Am Chem Soc; 2024 Sep; 146(38):26286-26296. PubMed ID: 39259775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Energetic Materials-Hosted 3D Inverse Opal-like Porous Carbon: Stabilization/Desensitization of Explosives.
    Shin MK; Kim MH; Kim GY; Kang B; Chae JS; Haam S
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43857-43864. PubMed ID: 30475574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized thermal desorption for improved sensitivity in trace explosives detection by ion mobility spectrometry.
    Najarro M; Dávila Morris ME; Staymates ME; Fletcher R; Gillen G
    Analyst; 2012 Jun; 137(11):2614-22. PubMed ID: 22498665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor.
    Wang C; Huang H; Bunes BR; Wu N; Xu M; Yang X; Yu L; Zang L
    Sci Rep; 2016 May; 6():25015. PubMed ID: 27146290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the stability of trace explosives under different environmental conditions using electrospray ionization mass spectrometry.
    Sisco E; Najarro M; Samarov D; Lawrence J
    Talanta; 2017 Apr; 165():10-17. PubMed ID: 28153227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltammetric determination of nitroaromatic and nitramine explosives contamination in soil.
    Pon Saravanan N; Venugopalan S; Senthilkumar N; Santhosh P; Kavita B; Gurumallesh Prabu H
    Talanta; 2006 May; 69(3):656-62. PubMed ID: 18970618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the concentration of explosives in air by isotope dilution analysis.
    St John GA; McReynolds JH; Blucher WG; Scott AC; Anbar M
    Forensic Sci; 1975; 6(1-2):53-66. PubMed ID: 814074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of explosives using a hollow cathode discharge ion source.
    Habib A; Chen LC; Usmanov DT; Yu Z; Hiraoka K
    Rapid Commun Mass Spectrom; 2015 Apr; 29(7):601-10. PubMed ID: 26212277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations.
    Zhang L; Zybin SV; van Duin AC; Dasgupta S; Goddard WA; Kober EM
    J Phys Chem A; 2009 Oct; 113(40):10619-40. PubMed ID: 19791809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speciation of energetic materials on a microcantilever using surface reduction.
    Yi D; Senesac L; Thundat T
    Scanning; 2008; 30(2):208-12. PubMed ID: 18288710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.