These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 31841349)
21. Quantitative Evaluation of Site Energies and Their Fluctuations of Pigments in the Fenna-Matthews-Olson Complex with an Efficient Method for Generating a Potential Energy Surface. Higashi M; Saito S J Chem Theory Comput; 2016 Aug; 12(8):4128-37. PubMed ID: 27385191 [TBL] [Abstract][Full Text] [Related]
22. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Engel GS; Calhoun TR; Read EL; Ahn TK; Mancal T; Cheng YC; Blankenship RE; Fleming GR Nature; 2007 Apr; 446(7137):782-6. PubMed ID: 17429397 [TBL] [Abstract][Full Text] [Related]
23. Excitation energy transfer pathways in light-harvesting proteins: Modeling with PyFREC. Kholod Y; DeFilippo M; Reed B; Valdez D; Gillan G; Kosenkov D J Comput Chem; 2018 Mar; 39(8):438-449. PubMed ID: 29243269 [TBL] [Abstract][Full Text] [Related]
24. On destabilization of the Fenna-Matthews-Olson complex of Chlorobaculum tepidum. Kell A; Acharya K; Blankenship RE; Jankowiak R Photosynth Res; 2014 Jun; 120(3):323-9. PubMed ID: 24584903 [TBL] [Abstract][Full Text] [Related]
25. Coherent wavepackets in the Fenna-Matthews-Olson complex are robust to excitonic-structure perturbations caused by mutagenesis. Maiuri M; Ostroumov EE; Saer RG; Blankenship RE; Scholes GD Nat Chem; 2018 Feb; 10(2):177-183. PubMed ID: 29359758 [TBL] [Abstract][Full Text] [Related]
26. Native electrospray mass spectrometry reveals the nature and stoichiometry of pigments in the FMO photosynthetic antenna protein. Wen J; Zhang H; Gross ML; Blankenship RE Biochemistry; 2011 May; 50(17):3502-11. PubMed ID: 21449539 [TBL] [Abstract][Full Text] [Related]
27. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria. Huh J; Saikin SK; Brookes JC; Valleau S; Fujita T; Aspuru-Guzik A J Am Chem Soc; 2014 Feb; 136(5):2048-57. PubMed ID: 24405318 [TBL] [Abstract][Full Text] [Related]
28. Role of Pigment-Protein Coupling in the Energy Transport Dynamics in the Fenna-Matthews-Olson Complex. Cui X; Yan Y; Wei J J Phys Chem B; 2021 Nov; 125(43):11884-11892. PubMed ID: 34669415 [TBL] [Abstract][Full Text] [Related]
29. Alternative Excitonic Structure in the Baseplate (BChl a-CsmA Complex) of the Chlorosome from Chlorobaculum tepidum. Kell A; Chen J; Jassas M; Tang JK; Jankowiak R J Phys Chem Lett; 2015 Jul; 6(14):2702-7. PubMed ID: 26266851 [TBL] [Abstract][Full Text] [Related]
30. The fate of the triplet excitations in the Fenna-Matthews-Olson complex. Kihara S; Hartzler DA; Orf GS; Blankenship RE; Savikhin S J Phys Chem B; 2015 May; 119(18):5765-72. PubMed ID: 25856694 [TBL] [Abstract][Full Text] [Related]
31. Quantum Entanglement and State-Transference in Fenna-Matthews-Olson Complexes: A Post-Experimental Simulation Analysis in the Computational Biology Domain. Delgado F; Enríquez M Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37446061 [TBL] [Abstract][Full Text] [Related]
32. Ultrafast Spectroscopic Investigation of Energy Transfer in Site-Directed Mutants of the Fenna-Matthews-Olson (FMO) Antenna Complex from Chlorobaculum tepidum. Magdaong NCM; Saer RG; Niedzwiedzki DM; Blankenship RE J Phys Chem B; 2017 May; 121(18):4700-4712. PubMed ID: 28422512 [TBL] [Abstract][Full Text] [Related]
33. Effects of Heterogeneous Protein Environment on Excitation Energy Transfer Dynamics in the Fenna-Matthews-Olson Complex. Hu Z; Liu Z; Sun X J Phys Chem B; 2022 Nov; 126(45):9271-9287. PubMed ID: 36327977 [TBL] [Abstract][Full Text] [Related]
34. Robustness of electronic coherence in the Fenna-Matthews-Olson complex to vibronic and structural modifications. Hayes D; Wen J; Panitchayangkoon G; Blankenship RE; Engel GS Faraday Discuss; 2011; 150():459-69; discussion 505-32. PubMed ID: 22457961 [TBL] [Abstract][Full Text] [Related]
35. Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex. Shim S; Rebentrost P; Valleau S; Aspuru-Guzik A Biophys J; 2012 Feb; 102(3):649-60. PubMed ID: 22325289 [TBL] [Abstract][Full Text] [Related]
36. Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl a in Solution and in FMO Proteins. Chandrasekaran S; Aghtar M; Valleau S; Aspuru-Guzik A; Kleinekathöfer U J Phys Chem B; 2015 Aug; 119(31):9995-10004. PubMed ID: 26156758 [TBL] [Abstract][Full Text] [Related]
37. Redox effects on the bacteriochlorophyll a-containing Fenna-Matthews-Olson protein from Chlorobium tepidum. Zhou W; LoBrutto R; Lin S; Blankenship RE Photosynth Res; 1994 Jul; 41(1):89-96. PubMed ID: 11539857 [TBL] [Abstract][Full Text] [Related]
38. Reinterpretation of the electron density at the site of the eighth bacteriochlorophyll in the FMO protein from Pelodictyon phaeum. Tronrud DE; Allen JP Photosynth Res; 2012 Apr; 112(1):71-4. PubMed ID: 22457093 [TBL] [Abstract][Full Text] [Related]
39. Optimization of energy transport in the Fenna-Matthews-Olson complex via site-varying pigment-protein interactions. Oh SA; Coker DF; Hutchinson DAW J Chem Phys; 2019 Feb; 150(8):085102. PubMed ID: 30823745 [TBL] [Abstract][Full Text] [Related]
40. The influence of quaternary structure on the stability of Fenna-Matthews-Olson (FMO) antenna complexes. Saer RG; Schultz RL; Blankenship RE Photosynth Res; 2019 Apr; 140(1):39-49. PubMed ID: 30315435 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]