These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 31841349)
41. The three-dimensional structure of the FMO protein from Pelodictyon phaeum and the implications for energy transfer. Larson CR; Seng CO; Lauman L; Matthies HJ; Wen J; Blankenship RE; Allen JP Photosynth Res; 2011 Feb; 107(2):139-50. PubMed ID: 21181557 [TBL] [Abstract][Full Text] [Related]
42. Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria. Fujita T; Huh J; Saikin SK; Brookes JC; Aspuru-Guzik A Photosynth Res; 2014 Jun; 120(3):273-89. PubMed ID: 24504540 [TBL] [Abstract][Full Text] [Related]
43. Excited states and trapping in reaction center complexes of the green sulfur bacterium Prosthecochloris aestuarii. Neerken S; Permentier HP; Francke C; Aartsma TJ; Amesz J Biochemistry; 1998 Jul; 37(30):10792-7. PubMed ID: 9692969 [TBL] [Abstract][Full Text] [Related]
44. Molecular asymmetry of a photosynthetic supercomplex from green sulfur bacteria. Puskar R; Du Truong C; Swain K; Chowdhury S; Chan KY; Li S; Cheng KW; Wang TY; Poh YP; Mazor Y; Liu H; Chou TF; Nannenga BL; Chiu PL Nat Commun; 2022 Oct; 13(1):5824. PubMed ID: 36192412 [TBL] [Abstract][Full Text] [Related]
45. Hydrogen-deuterium exchange mass spectrometry reveals the interaction of Fenna-Matthews-Olson protein and chlorosome CsmA protein. Huang RY; Wen J; Blankenship RE; Gross ML Biochemistry; 2012 Jan; 51(1):187-93. PubMed ID: 22142245 [TBL] [Abstract][Full Text] [Related]
46. Characterization of an FMO variant of Chlorobaculum tepidum carrying bacteriochlorophyll a esterified by geranylgeraniol. Wen J; Harada J; Buyle K; Yuan K; Tamiaki H; Oh-Oka H; Loomis RA; Blankenship RE Biochemistry; 2010 Jul; 49(26):5455-63. PubMed ID: 20521767 [TBL] [Abstract][Full Text] [Related]
47. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex. Baker LA; Habershon S J Chem Phys; 2015 Sep; 143(10):105101. PubMed ID: 26374060 [TBL] [Abstract][Full Text] [Related]
48. Benchmark and performance of long-range corrected time-dependent density functional tight binding (LC-TD-DFTB) on rhodopsins and light-harvesting complexes. Bold BM; Sokolov M; Maity S; Wanko M; Dohmen PM; Kranz JJ; Kleinekathöfer U; Höfener S; Elstner M Phys Chem Chem Phys; 2020 May; 22(19):10500-10518. PubMed ID: 31950960 [TBL] [Abstract][Full Text] [Related]
49. Two-dimensional electronic spectroscopy of bacteriochlorophyll a in solution: Elucidating the coherence dynamics of the Fenna-Matthews-Olson complex using its chromophore as a control. Fransted KA; Caram JR; Hayes D; Engel GS J Chem Phys; 2012 Sep; 137(12):125101. PubMed ID: 23020349 [TBL] [Abstract][Full Text] [Related]
50. Origin of long-lived coherences in light-harvesting complexes. Christensson N; Kauffmann HF; Pullerits T; Mančal T J Phys Chem B; 2012 Jun; 116(25):7449-54. PubMed ID: 22642682 [TBL] [Abstract][Full Text] [Related]
51. Intensity dependence of the excited state lifetimes and triplet conversion yield in the Fenna-Matthews-Olson antenna protein. Orf GS; Niedzwiedzki DM; Blankenship RE J Phys Chem B; 2014 Feb; 118(8):2058-69. PubMed ID: 24490821 [TBL] [Abstract][Full Text] [Related]
52. Origin of bimodal fluorescence enhancement factors of Chlorobaculum tepidum reaction centers on silver island films. Maćkowski S; Czechowski N; Ashraf KU; Szalkowski M; Lokstein H; Cogdell RJ; Kowalska D FEBS Lett; 2016 Aug; 590(16):2558-65. PubMed ID: 27406896 [TBL] [Abstract][Full Text] [Related]
53. A reconstituted light-harvesting complex from the green sulfur bacterium Chlorobium tepidum containing CsmA and bacteriochlorophyll a. Pedersen MØ; Pham L; Steensgaard DB; Miller M Biochemistry; 2008 Feb; 47(5):1435-41. PubMed ID: 18177020 [TBL] [Abstract][Full Text] [Related]
54. Plasmonic bio-sensing for the Fenna-Matthews-Olson complex. Chen GY; Lambert N; Shih YA; Liu MH; Chen YN; Nori F Sci Rep; 2017 Jan; 7():39720. PubMed ID: 28045089 [TBL] [Abstract][Full Text] [Related]
55. Calculation of pigment transition energies in the FMO protein: from simplicity to complexity and back. Adolphs J; Müh F; Madjet Mel-A; Renger T Photosynth Res; 2008; 95(2-3):197-209. PubMed ID: 17917787 [TBL] [Abstract][Full Text] [Related]
56. Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Wen J; Zhang H; Gross ML; Blankenship RE Proc Natl Acad Sci U S A; 2009 Apr; 106(15):6134-9. PubMed ID: 19339500 [TBL] [Abstract][Full Text] [Related]
57. Chirality-based signatures of local protein environments in two-dimensional optical spectroscopy of two species photosynthetic complexes of green sulfur bacteria: simulation study. Voronine DV; Abramavicius D; Mukamel S Biophys J; 2008 Nov; 95(10):4896-907. PubMed ID: 18676650 [TBL] [Abstract][Full Text] [Related]
58. Vibronically coherent speed-up of the excitation energy transfer in the Fenna-Matthews-Olson complex. Nalbach P; Mujica-Martinez CA; Thorwart M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022706. PubMed ID: 25768530 [TBL] [Abstract][Full Text] [Related]
59. Chemical oxidation of the FMO antenna protein from Chlorobaculum tepidum. Bina D; Blankenship RE Photosynth Res; 2013 Sep; 116(1):11-9. PubMed ID: 23828400 [TBL] [Abstract][Full Text] [Related]
60. Visualization of excitonic structure in the Fenna-Matthews-Olson photosynthetic complex by polarization-dependent two-dimensional electronic spectroscopy. Read EL; Schlau-Cohen GS; Engel GS; Wen J; Blankenship RE; Fleming GR Biophys J; 2008 Jul; 95(2):847-56. PubMed ID: 18375502 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]