BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31841408)

  • 1. High-Frequency Multipulse, Plane-Wave Acoustic Contrast Imaging.
    Ketterling JA; Silverman RH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 May; 67(5):934-942. PubMed ID: 31841408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound contrast plane wave imaging.
    Couture O; Fink M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2676-83. PubMed ID: 23221216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Microbubble Echo Phase Lag in Multipulse Contrast-Enhanced Ultrasound Imaging.
    Tremblay-Darveau C; Sheeran PS; Vu CK; Williams R; Zhang Z; Bruce M; Burns PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1389-1401. PubMed ID: 29993575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast, Low-Frequency Plane-Wave Imaging for Ultrasound Contrast Imaging.
    Kusunose J; Caskey CF
    Ultrasound Med Biol; 2018 Oct; 44(10):2131-2142. PubMed ID: 30057134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear Imaging of Microbubble Contrast Agent Using the Volterra Filter: In Vivo Results.
    Du J; Liu D; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Dec; 63(12):2069-2081. PubMed ID: 27705855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Multifocus Beamforming for Contrast-Enhanced-Super-Resolution Ultrasound Imaging in Deep Tissue.
    Espindola D; Lin F; Soulioti DE; Dayton PA; Pinton GF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2255-2263. PubMed ID: 30136938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential contrast improvement in ultrasound pulse inversion imaging using EMD and EEMD.
    Liao AH; Shen CC; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):317-26. PubMed ID: 20178898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sensitive TLRH targeted imaging technique for ultrasonic molecular imaging.
    Hu X; Zheng H; Kruse DE; Sutcliffe P; Stephens DN; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):305-16. PubMed ID: 20178897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-processing radio-frequency signal based on deep learning method for ultrasonic microbubble imaging.
    Dai M; Li S; Wang Y; Zhang Q; Yu J
    Biomed Eng Online; 2019 Sep; 18(1):95. PubMed ID: 31511011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Very Low Frequency Radial Modulation for Deep Penetration Contrast-Enhanced Ultrasound Imaging.
    Jing B; Lindsey BD
    Ultrasound Med Biol; 2022 Mar; 48(3):530-545. PubMed ID: 34972572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Self-adaptive beamforming method based on plane wave ultrasound imaging].
    Zhang L; Zhou H; Zheng Y; Gong X; Wang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):843-8, 853. PubMed ID: 24059068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound assessment of translation of microbubbles driven by acoustic radiation force in a channel filled with stationary fluid.
    Yoshida K; Saito K; Omura M; Tamura K; Yamaguchi T
    J Acoust Soc Am; 2019 Oct; 146(4):2335. PubMed ID: 31672000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase shift variance imaging - a new technique for destructive microbubble imaging.
    Siepmann M; Fokong S; Mienkina M; Lederle W; Kiessling F; Gätjens J; Schmitz G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):909-23. PubMed ID: 23661125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of the transmit beam parameters for generation of subharmonic signals in native and altered populations of a commercial microbubble contrast agent SonoVue®.
    Ivory AM; Meaney JF; Fagan AJ; Browne JE
    Phys Med; 2020 Feb; 70():176-183. PubMed ID: 32036334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound Contrast Plane Wave Imaging Based on Bubble Wavelet Transform: In Vitro and In Vivo Validations.
    Wang D; Zong Y; Yang X; Hu H; Wan J; Zhang L; Bouakaz A; Wan M
    Ultrasound Med Biol; 2016 Jul; 42(7):1584-97. PubMed ID: 27067280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observing Bubble Cavitation by Back-Propagation of Acoustic Emission Signals.
    Koda R; Origasa T; Nakajima T; Yamakoshi Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 May; 66(5):823-833. PubMed ID: 30735990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrast-enhanced ultrasound imaging using pulse inversion spectral deconvolution.
    Khairalseed M; Oezdemir I; Hoyt K
    J Acoust Soc Am; 2019 Oct; 146(4):2466. PubMed ID: 31671995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing specificity of contrast-enhanced ultrasound imaging using the interaction of quasi counter-propagating wavefronts: a proof of concept.
    Renaud G; Bosch JG; van der Steen AF; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Oct; 62(10):1768-78. PubMed ID: 26470039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamental study on subharmonic imaging by irradiation of amplitude-modulated ultrasound waves.
    Maikusa N; Fukami T; Yuasa T; Tamura Y; Akatsuka T
    J Acoust Soc Am; 2007 Jul; 122(1):672-6. PubMed ID: 17614523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vitro Superharmonic Contrast Imaging Using a Hybrid Dual-Frequency Probe.
    Cherin E; Yin J; Forbrich A; White C; Dayton PA; Foster FS; Démoré CEM
    Ultrasound Med Biol; 2019 Sep; 45(9):2525-2539. PubMed ID: 31196746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.