BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31841520)

  • 1. Universal antibiotic tolerance arising from antibiotic-triggered accumulation of pyocyanin in Pseudomonas aeruginosa.
    Zhu K; Chen S; Sysoeva TA; You L
    PLoS Biol; 2019 Dec; 17(12):e3000573. PubMed ID: 31841520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyocyanin-dependent electrochemical inhibition of
    Jiménez Otero F; Newman DK; Tender LM
    mBio; 2023 Aug; 14(4):e0070223. PubMed ID: 37314185
    [No Abstract]   [Full Text] [Related]  

  • 3. Real-Time Electrochemical Detection of Pseudomonas aeruginosa Phenazine Metabolites Using Transparent Carbon Ultramicroelectrode Arrays.
    Simoska O; Sans M; Fitzpatrick MD; Crittenden CM; Eberlin LS; Shear JB; Stevenson KJ
    ACS Sens; 2019 Jan; 4(1):170-179. PubMed ID: 30525472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity.
    Hunter RC; Klepac-Ceraj V; Lorenzi MM; Grotzinger H; Martin TR; Newman DK
    Am J Respir Cell Mol Biol; 2012 Dec; 47(6):738-45. PubMed ID: 22865623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyocyanin and 1-Hydroxyphenazine Promote Anaerobic Killing of Pseudomonas aeruginosa via Single-Electron Transfer with Ferrous Iron.
    Kang J; Cho YH; Lee Y
    Microbiol Spectr; 2022 Dec; 10(6):e0231222. PubMed ID: 36321913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14.
    Price-Whelan A; Dietrich LE; Newman DK
    J Bacteriol; 2007 Sep; 189(17):6372-81. PubMed ID: 17526704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Pyruvate and α-Ketoglutarate Dehydrogenase Complexes of
    Glasser NR; Wang BX; Hoy JA; Newman DK
    J Biol Chem; 2017 Mar; 292(13):5593-5607. PubMed ID: 28174304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenazines and toxoflavin act as interspecies modulators of resilience to diverse antibiotics.
    Meirelles LA; Newman DK
    Mol Microbiol; 2022 Jun; 117(6):1384-1404. PubMed ID: 35510686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunochemical Determination of Pyocyanin and 1-Hydroxyphenazine as Potential Biomarkers of Pseudomonas aeruginosa Infections.
    Pastells C; Pascual N; Sanchez-Baeza F; Marco MP
    Anal Chem; 2016 Feb; 88(3):1631-8. PubMed ID: 26738983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections.
    Rada B; Leto TL
    Trends Microbiol; 2013 Feb; 21(2):73-81. PubMed ID: 23140890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular Effects of Pyocyanin, a Secreted Virulence Factor of Pseudomonas aeruginosa.
    Hall S; McDermott C; Anoopkumar-Dukie S; McFarland AJ; Forbes A; Perkins AV; Davey AK; Chess-Williams R; Kiefel MJ; Arora D; Grant GD
    Toxins (Basel); 2016 Aug; 8(8):. PubMed ID: 27517959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADH dehydrogenases are the predominant phenazine reductases in the electron transport chain of Pseudomonas aeruginosa.
    Ciemniecki JA; Newman DK
    Mol Microbiol; 2023 May; 119(5):560-573. PubMed ID: 36840394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computationally designed pyocyanin demethylase acts synergistically with tobramycin to kill recalcitrant
    VanDrisse CM; Lipsh-Sokolik R; Khersonsky O; Fleishman SJ; Newman DK
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33723058
    [No Abstract]   [Full Text] [Related]  

  • 14. Under nonlimiting iron conditions pyocyanin is a major antifungal molecule, and differences between prototypic Pseudomonas aeruginosa strains.
    Sass G; Nazik H; Chatterjee P; Stevens DA
    Med Mycol; 2021 May; 59(5):453-464. PubMed ID: 32827431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo.
    Allen L; Dockrell DH; Pattery T; Lee DG; Cornelis P; Hellewell PG; Whyte MK
    J Immunol; 2005 Mar; 174(6):3643-9. PubMed ID: 15749902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection.
    Usher LR; Lawson RA; Geary I; Taylor CJ; Bingle CD; Taylor GW; Whyte MK
    J Immunol; 2002 Feb; 168(4):1861-8. PubMed ID: 11823520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyocyanin: production, applications, challenges and new insights.
    Jayaseelan S; Ramaswamy D; Dharmaraj S
    World J Microbiol Biotechnol; 2014 Apr; 30(4):1159-68. PubMed ID: 24214679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox cycling-based detection of phenazine metabolites secreted from Pseudomonas aeruginosa in nanopore electrode arrays.
    Do H; Kwon SR; Baek S; Madukoma CS; Smiley MK; Dietrich LE; Shrout JD; Bohn PW
    Analyst; 2021 Feb; 146(4):1346-1354. PubMed ID: 33393560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial defenses against a natural antibiotic promote collateral resilience to clinical antibiotics.
    Meirelles LA; Perry EK; Bergkessel M; Newman DK
    PLoS Biol; 2021 Mar; 19(3):e3001093. PubMed ID: 33690640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in toxin production of environmental Pseudomonas aeruginosa isolates exposed to sub-inhibitory concentrations of three common antibiotics.
    Mojsoska B; Ghoul M; Perron GG; Jenssen H; Alatraktchi FA
    PLoS One; 2021; 16(3):e0248014. PubMed ID: 33662048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.