BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31841596)

  • 1. PUBLIC EXPOSURE TO EXTERNAL GAMMA RADIATION ON A MINE LANDFORM COVERED BY LOW URANIUM GRADE WASTE ROCK.
    Doering C
    Radiat Prot Dosimetry; 2020 Jun; 188(1):123-128. PubMed ID: 31841596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the dispersion of radionuclides in dust from a landform covered by low uranium grade waste rock.
    Doering C; McMaster SA; Johansen MP
    J Environ Radioact; 2019 Jun; 202():51-58. PubMed ID: 30797160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the dispersion of radon-222 from a landform covered by low uranium grade waste rock.
    Doering C; McMaster SA; Johansen MP
    J Environ Radioact; 2018 Dec; 192():498-504. PubMed ID: 30114620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RADON CONCENTRATION IN THE AREA OF WASTE ROCK DUMPS, BROD, CR-CASE STUDY.
    Thinova L; Bican R; Fronka A; Johnova K; Solc J; Vosahlik J
    Radiat Prot Dosimetry; 2017 Nov; 177(1-2):149-154. PubMed ID: 28981883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. INVESTIGATION OF ENVIRONMENTAL RADIOACTIVITY AT A DECOMMISSIONED URANIUM MINE IN SOUTHERN CHINA.
    Wu H; Di R; Liu Y; Liu Y; Xiong C; Shi Y
    Radiat Prot Dosimetry; 2022 Feb; 198(1-2):109-118. PubMed ID: 35106600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the total effective dose of miners in the underground Rožná Uranium Mine in the Czech Republic during the period 2004-2009.
    Sabol J; Jurda M; Gregor Z; Navrátil L
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):615-9. PubMed ID: 21081516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Miners' exposure to radon and its decay products in some Iranian non-uranium underground mines.
    Fathabadi N; Ghiassi-Nejad M; Haddadi B; Moradi M
    Radiat Prot Dosimetry; 2006; 118(1):111-6. PubMed ID: 16081493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of occupational exposure to naturally occurring radioactive materials in the Iranian ceramics industry.
    Fathabadi N; Farahani MV; Amani S; Moradi M; Haddadi B
    Radiat Prot Dosimetry; 2011 Jun; 145(4):400-4. PubMed ID: 21148590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved mathematical model for prediction of air quantity to minimise radiation levels in underground uranium mines.
    Panigrahi DC; Sahu P; Mishra DP
    J Environ Radioact; 2015 Feb; 140():95-104. PubMed ID: 25461521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A soil radiological quality guideline value for wildlife-based protection in uranium mine rehabilitation.
    Doering C; Bollhöfer A
    J Environ Radioact; 2016 Jan; 151 Pt 3():522-9. PubMed ID: 26350640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The radiological impact of mining in a Th-rich Norwegian area.
    Stranden E
    Health Phys; 1985 Apr; 48(4):415-20. PubMed ID: 2984147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radon in the environment and in dwellings in a uranium mining area in eastern India: an overview.
    Khan AH; Puranik VD
    Radiat Prot Dosimetry; 2011 May; 145(2-3):198-201. PubMed ID: 21471128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of radiation parameters in an open-pit mine.
    Leach VA; Lokan KH; Martin LJ
    Health Phys; 1982 Sep; 43(3):363-75. PubMed ID: 6293999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining a pre-mining radiological baseline from historic airborne gamma surveys: a case study.
    Bollhöfer A; Beraldo A; Pfitzner K; Esparon A; Doering C
    Sci Total Environ; 2014 Jan; 468-469():764-73. PubMed ID: 24076500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing Radiological Screening Levels for Defense-related Uranium Mine (DRUM) Sites on BLM Land Using a Recreational Future-use Scenario.
    Brown SH; Edge R; Elmer J; McDonald M
    Health Phys; 2018 Jun; 114(6):588-601. PubMed ID: 29697511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimates of the occupational exposure to tenorm in the phosphoric acid production plant in Iran.
    Fathabadi N; Vasheghani Farahani M; Moradi M; Hadadi B
    Radiat Prot Dosimetry; 2012 Sep; 151(3):600-3. PubMed ID: 22361352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural radionuclides in zircon and related radiological impacts in mineral separation plants.
    Haridasan PP; Pillai PM; Khan AH; Puranik VD
    Radiat Prot Dosimetry; 2006; 121(4):364-9. PubMed ID: 16682394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A NEW BACKGROUND SUBTRACTION METHOD FOR ASSESSING PUBLIC RADIATION EXPOSURE DUE TO RADON TRANSPORT FROM A URANIUM MINE.
    Doering C
    Radiat Prot Dosimetry; 2019 Dec; 186(4):530-535. PubMed ID: 31145802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China.
    Haribala ; Hu B; Wang C; Gerilemandahu ; Xu X; Zhang S; Bao S; Li Y
    Ecotoxicol Environ Saf; 2016 Aug; 130():185-92. PubMed ID: 27107776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-integrated monitoring of thoron progeny concentration around closed uranium mine sites in Japan.
    Ishimori Y
    Radiat Prot Dosimetry; 2010 Oct; 141(4):452-6. PubMed ID: 20846970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.