These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31841671)

  • 41. Relationships between dietary breadth and flexibility in jaw movement: A case study of two recently diverged insular populations of Podarcis lizards.
    Taverne M; Decamps T; Mira O; Sabolić I; Duarte Da Silva J; Glogoški M; Lisičić D; Štambuk A; Herrel A
    Comp Biochem Physiol A Mol Integr Physiol; 2022 Mar; 265():111140. PubMed ID: 34979243
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic finite element modelling of the macaque mandible during a complete mastication gape cycle.
    Panagiotopoulou O; Robinson D; Iriarte-Diaz J; Ackland D; Taylor AB; Ross CF
    Philos Trans R Soc Lond B Biol Sci; 2023 Dec; 378(1891):20220549. PubMed ID: 37839457
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantification of human chewing-cycle kinematics.
    Buschang PH; Hayasaki H; Throckmorton GS
    Arch Oral Biol; 2000 Jun; 45(6):461-74. PubMed ID: 10775675
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Extending the Geometric Approach for Studying Biomechanical Motions.
    Martinez CM; Wainwright PC
    Integr Comp Biol; 2019 Sep; 59(3):684-695. PubMed ID: 31199437
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Kinematics of Proal Chewing in Rats.
    McParland ED; Mitchell JK; Laurence-Chasen JD; Aspinwall LC; Afolabi O; Takahashi K; Ross CF; Gidmark NJ
    Integr Org Biol; 2024; 6(1):obae023. PubMed ID: 39086740
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flexibility of feeding movements in pigs: effects of changes in food toughness and stiffness on the timing of jaw movements.
    Montuelle SJ; Olson R; Curtis H; Sidote J; Williams SH
    J Exp Biol; 2018 Jan; 221(Pt 2):. PubMed ID: 29378880
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A dynamic model of jaw and hyoid biomechanics during chewing.
    Hannam AG; Stavness I; Lloyd JE; Fels S
    J Biomech; 2008; 41(5):1069-76. PubMed ID: 18191864
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of an experimental optoelectronic device to study the amplitude of mandibular movements.
    Missaka R; Adachi LK; Tamaki R; Shinkai RS; Campos TN; Horikawa O
    Braz Oral Res; 2008; 22(2):151-7. PubMed ID: 18622485
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-dimensional analysis of jaw kinematic alterations in patients with chronic TMD - disc displacement with reduction.
    Mapelli A; Machado BC; Garcia DM; Rodrigues Da Silva MA; Sforza C; de Felício CM
    J Oral Rehabil; 2016 Nov; 43(11):824-832. PubMed ID: 27545052
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of food physical properties by the mastication parameters measured by electromyography of the jaw-closing muscles and mandibular kinematics in young adults.
    Kohyama K; Sasaki T; Hayakawa F
    Biosci Biotechnol Biochem; 2008 Jul; 72(7):1690-5. PubMed ID: 18603809
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prey-capture in Pomacanthus semicirculatus (Teleostei, Pomacanthidae): functional implications of intramandibular joints in marine angelfishes.
    Konow N; Bellwood DR
    J Exp Biol; 2005 Apr; 208(Pt 8):1421-33. PubMed ID: 15802666
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Model-based analysis of jaw-movement kinematics using jerk-optimal criterion: simulation of human chewing cycles.
    Yashiro K; Takada K
    J Electromyogr Kinesiol; 2005 Oct; 15(5):516-26. PubMed ID: 15935963
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Post-operative optimization of gum-chewing kinematics in a prognathic patient.
    Yashiro K; Takada K
    Orthod Craniofac Res; 2004 Feb; 7(1):47-54. PubMed ID: 14989755
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Unusual kinematics and jaw morphology associated with piscivory in the poeciliid, Belonesox belizanus.
    Ferry-Graham LA; Hernandez LP; Gibb AC; Pace C
    Zoology (Jena); 2010 May; 113(3):140-7. PubMed ID: 20435454
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dietary correlates of temporomandibular joint morphology in the great apes.
    Terhune CE
    Am J Phys Anthropol; 2013 Feb; 150(2):260-72. PubMed ID: 23225317
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Feeding behavior, diet, and the functional consequences of jaw form in orangutans, with implications for the evolution of Pongo.
    Taylor AB
    J Hum Evol; 2006 Apr; 50(4):377-93. PubMed ID: 16413045
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Broad-scale morpho-functional traits of the mandible suggest no hard food adaptation in the hominin lineage.
    Marcé-Nogué J; Püschel TA; Daasch A; Kaiser TM
    Sci Rep; 2020 Apr; 10(1):6793. PubMed ID: 32322020
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Motor control of jaw muscles in chewing and in isometric biting with graded narrowing of jaw gape.
    Pröschel PA; Jamal T; Morneburg TR
    J Oral Rehabil; 2008 Oct; 35(10):722-8. PubMed ID: 18482344
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Shearing overbite and asymmetrical jaw motions facilitate food breakdown in a freshwater stingray,
    Laurence-Chasen JD; Ramsay JB; Brainerd EL
    J Exp Biol; 2019 Jul; 222(Pt 13):. PubMed ID: 31292213
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of maximum bite force on jaw movement during gummy jelly mastication.
    Kuninori T; Tomonari H; Uehara S; Kitashima F; Yagi T; Miyawaki S
    J Oral Rehabil; 2014 May; 41(5):338-45. PubMed ID: 24612273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.