These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 31841888)
21. Possibility of different time scales in the capillary rise around a fiber. Seveno D; De Coninck J Langmuir; 2004 Feb; 20(3):737-42. PubMed ID: 15773099 [TBL] [Abstract][Full Text] [Related]
22. Contact Angle Determination on Hydrophilic and Superhydrophilic Surfaces by Using r-θ-Type Capillary Bridges. Nagy N Langmuir; 2019 Apr; 35(15):5202-5212. PubMed ID: 30916567 [TBL] [Abstract][Full Text] [Related]
23. A refractive tilting-plate technique for measurement of dynamic contact angles. Smedley GT; Coles DE J Colloid Interface Sci; 2005 Jun; 286(1):310-8. PubMed ID: 15848433 [TBL] [Abstract][Full Text] [Related]
24. A Langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics. Smith ER; Müller EA; Craster RV; Matar OK Soft Matter; 2016 Dec; 12(48):9604-9615. PubMed ID: 27853798 [TBL] [Abstract][Full Text] [Related]
25. Understanding the asymmetry between advancing and receding microscopic contact angles. Omori T; Kobayashi Y; Yamaguchi Y; Kajishima T Soft Matter; 2019 May; 15(19):3923-3928. PubMed ID: 31011723 [TBL] [Abstract][Full Text] [Related]
26. Spreading on viscoelastic solids: are contact angles selected by Neumann's law? van Gorcum M; Karpitschka S; Andreotti B; Snoeijer JH Soft Matter; 2020 Feb; 16(5):1306-1322. PubMed ID: 31934702 [TBL] [Abstract][Full Text] [Related]
27. Understanding contact angle hysteresis on an ambient solid surface. Wang YJ; Guo S; Chen HY; Tong P Phys Rev E; 2016 May; 93(5):052802. PubMed ID: 27300959 [TBL] [Abstract][Full Text] [Related]
28. The molecular-kinetic approach to wetting dynamics: Achievements and limitations. Sedev R Adv Colloid Interface Sci; 2015 Aug; 222():661-9. PubMed ID: 25449187 [TBL] [Abstract][Full Text] [Related]
29. Convex nanobending at a moving contact line: the missing mesoscopic link in dynamic wetting. Chen L; Yu J; Wang H ACS Nano; 2014 Nov; 8(11):11493-8. PubMed ID: 25337962 [TBL] [Abstract][Full Text] [Related]
30. Dynamics of nanoscale droplets on moving surfaces. Ritos K; Dongari N; Borg MK; Zhang Y; Reese JM Langmuir; 2013 Jun; 29(23):6936-43. PubMed ID: 23683083 [TBL] [Abstract][Full Text] [Related]
31. Experimental study of dynamic contact angles on rough hydrophobic surfaces. Mohammad Karim A; Rothstein JP; Kavehpour HP J Colloid Interface Sci; 2018 Mar; 513():658-665. PubMed ID: 29207348 [TBL] [Abstract][Full Text] [Related]
32. Atomistic Study of Dynamic Contact Angles in CO Huang P; Shen L; Gan Y; Maggi F; El-Zein A; Pan Z Langmuir; 2019 Apr; 35(15):5324-5332. PubMed ID: 30869902 [TBL] [Abstract][Full Text] [Related]
33. Capture and re-entrainment of microdroplets on fibers. Abishek S; Mead-Hunter R; King AJC; Mullins BJ Phys Rev E; 2019 Oct; 100(4-1):042803. PubMed ID: 31770884 [TBL] [Abstract][Full Text] [Related]
34. Receding Contact Line Motion on Nanopatterned and Micropatterned Polymer Surfaces. Gao N; Chiu M; Neto C Langmuir; 2017 Nov; 33(44):12602-12608. PubMed ID: 29016148 [TBL] [Abstract][Full Text] [Related]
35. Drop rebound after impact: the role of the receding contact angle. Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086 [TBL] [Abstract][Full Text] [Related]