These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31841902)

  • 1. Integrated machine learning methods with resampling algorithms for flood susceptibility prediction.
    Dodangeh E; Choubin B; Eigdir AN; Nabipour N; Panahi M; Shamshirband S; Mosavi A
    Sci Total Environ; 2020 Feb; 705():135983. PubMed ID: 31841902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How far spatial resolution affects the ensemble machine learning based flood susceptibility prediction in data sparse region.
    Saha TK; Pal S; Talukdar S; Debanshi S; Khatun R; Singha P; Mandal I
    J Environ Manage; 2021 Nov; 297():113344. PubMed ID: 34314957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing flood mapping through ensemble machine learning in the Gamasyab watershed, Western Iran.
    Bashirgonbad M; Farokhzadeh B; Gholami V
    Environ Sci Pollut Res Int; 2024 Aug; 31(38):50427-50442. PubMed ID: 39090299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced machine learning algorithms for flood susceptibility modeling - performance comparison: Red Sea, Egypt.
    Youssef AM; Pourghasemi HR; El-Haddad BA
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):66768-66792. PubMed ID: 35508847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of genetic algorithm in optimization parallel ensemble-based machine learning algorithms to flood susceptibility mapping using radar satellite imagery.
    Razavi-Termeh SV; Sadeghi-Niaraki A; Seo M; Choi SM
    Sci Total Environ; 2023 May; 873():162285. PubMed ID: 36801341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping.
    Shafizadeh-Moghadam H; Valavi R; Shahabi H; Chapi K; Shirzadi A
    J Environ Manage; 2018 Jul; 217():1-11. PubMed ID: 29579536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of hard and soft supervised machine learning for flood susceptibility mapping.
    Andaryani S; Nourani V; Haghighi AT; Keesstra S
    J Environ Manage; 2021 Aug; 291():112731. PubMed ID: 33962279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach based on biology-inspired metaheuristic algorithms in combination with random forest to enhance the flood susceptibility mapping.
    Razavi-Termeh SV; Sadeghi-Niaraki A; Choi SM
    J Environ Manage; 2023 Nov; 345():118790. PubMed ID: 37647734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel framework for addressing uncertainties in machine learning-based geospatial approaches for flood prediction.
    Adnan MSG; Siam ZS; Kabir I; Kabir Z; Ahmed MR; Hassan QK; Rahman RM; Dewan A
    J Environ Manage; 2023 Jan; 326(Pt B):116813. PubMed ID: 36435143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating machine learning and geospatial data analysis for comprehensive flood hazard assessment.
    Singha C; Rana VK; Pham QB; Nguyen DC; Łupikasza E
    Environ Sci Pollut Res Int; 2024 Jul; 31(35):48497-48522. PubMed ID: 39030454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solving the spatial extrapolation problem in flood susceptibility using hybrid machine learning, remote sensing, and GIS.
    Nguyen HD; Nguyen QH; Bui QT
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):18701-18722. PubMed ID: 38349496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland Australia.
    Rahmati O; Falah F; Dayal KS; Deo RC; Mohammadi F; Biggs T; Moghaddam DD; Naghibi SA; Bui DT
    Sci Total Environ; 2020 Jan; 699():134230. PubMed ID: 31522053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of learning vector quantization and different machine learning techniques to assessing forest fire influence factors and spatial modelling.
    Pourghasemi HR; Gayen A; Lasaponara R; Tiefenbacher JP
    Environ Res; 2020 May; 184():109321. PubMed ID: 32199317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Nine Statistical Model Based Warfarin Pharmacogenetic Dosing Algorithms Using the Racially Diverse International Warfarin Pharmacogenetic Consortium Cohort Database.
    Liu R; Li X; Zhang W; Zhou HH
    PLoS One; 2015; 10(8):e0135784. PubMed ID: 26305568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania.
    Costache R; Tien Bui D
    Sci Total Environ; 2019 Nov; 691():1098-1118. PubMed ID: 31466192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the performance of GIS- based machine learning models with different accuracy measures for determining susceptibility to gully erosion.
    Garosi Y; Sheklabadi M; Conoscenti C; Pourghasemi HR; Van Oost K
    Sci Total Environ; 2019 May; 664():1117-1132. PubMed ID: 30901785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of stacking hybrid machine learning algorithms in delineating multi-type flooding in Bangladesh.
    Rahman M; Chen N; Elbeltagi A; Islam MM; Alam M; Pourghasemi HR; Tao W; Zhang J; Shufeng T; Faiz H; Baig MA; Dewan A
    J Environ Manage; 2021 Oct; 295():113086. PubMed ID: 34153582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility.
    Chen W; Lei X; Chakrabortty R; Chandra Pal S; Sahana M; Janizadeh S
    J Environ Manage; 2021 Apr; 284():112015. PubMed ID: 33515838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods.
    Bui DT; Tsangaratos P; Ngo PT; Pham TD; Pham BT
    Sci Total Environ; 2019 Jun; 668():1038-1054. PubMed ID: 31018446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel hybrid models between bivariate statistics, artificial neural networks and boosting algorithms for flood susceptibility assessment.
    Costache R; Pham QB; Avand M; Thuy Linh NT; Vojtek M; Vojteková J; Lee S; Khoi DN; Thao Nhi PT; Dung TD
    J Environ Manage; 2020 Jul; 265():110485. PubMed ID: 32421551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.