BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 31841956)

  • 1. Characterization of dissolved organic matter derived from atmospheric dry deposition and its DBP formation.
    He J; Wang F; Zhao T; Liu S; Chu W
    Water Res; 2020 Mar; 171():115368. PubMed ID: 31841956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of atmospheric particulate matter to the formation of CX
    Hou M; Chu W; Wang F; Deng Y; Gao N; Zhang D
    Water Res; 2018 Nov; 145():531-540. PubMed ID: 30195992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of CX
    He J; Shi M; Wang F; Duan Y; Zhao T; Shu S; Chu W
    Water Res; 2020 Oct; 185():116099. PubMed ID: 32739696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using UV/H
    Ding S; Wang F; Chu W; Fang C; Pan Y; Lu S; Gao N
    Water Res; 2019 Dec; 167():115096. PubMed ID: 31577966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation, speciation and toxicity of CX
    Luo X; Zhu S; Wang J; Sun J; Bu L; Zhou S
    Ecotoxicol Environ Saf; 2020 Mar; 191():110247. PubMed ID: 32004943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorination of soil-derived dissolved organic matter: Long term nitrogen deposition does not increase terrestrial precursors of toxic disinfection byproducts.
    Li LP; Huang WL; Yang MT; Liu Y; Bowden RD; Simpson MJ; Lajtha K; Tian LQ; Wang JJ
    Water Res; 2020 Oct; 185():116271. PubMed ID: 32784033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated control of CX
    Zhang A; Wang F; Chu W; Yang X; Pan Y; Zhu H
    Water Res; 2019 Sep; 160():304-312. PubMed ID: 31154128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of regulated and unregulated disinfection byproducts during chlorination and chloramination: Roles of dissolved organic matter type, bromide, and iodide.
    Liu Y; Liu K; Plewa MJ; Karanfil T; Liu C
    J Environ Sci (China); 2022 Jul; 117():151-160. PubMed ID: 35725067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of molecular weight distribution of dissolved organic matter in bromide-containing water and disinfection by-product formation properties during treatment processes.
    Zhang Y; Zhang N; Zhao P; Niu Z
    J Environ Sci (China); 2018 Mar; 65():179-189. PubMed ID: 29548389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent and molecular weight dependence of THM and HAA formation from intracellular algogenic organic matter (IOM).
    Hua LC; Chao SJ; Huang C
    Water Res; 2019 Jan; 148():231-238. PubMed ID: 30388524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The formation of disinfection by-products from the chlorination and chloramination of amides.
    Sfynia C; Bond T; Kanda R; Templeton MR
    Chemosphere; 2020 Jun; 248():125940. PubMed ID: 32006828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Derivates variation of phenylalanine as a model disinfection by-product precursor during long term chlorination and chloramination.
    Zhou K; Ye S; Yu Q; Chen J; Yong P; Ma X; Li Q; Dietrich AM
    Sci Total Environ; 2021 Jun; 771():144885. PubMed ID: 33736131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terrestrial dissolved organic matter source affects disinfection by-product formation during water treatment and subsequent toxicity.
    Franklin HM; Doederer K; Neale PA; Hayton JB; Fisher P; Maxwell P; Carroll AR; Burford MA; Leusch FDL
    Environ Pollut; 2021 Aug; 283():117232. PubMed ID: 34034019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial degradation of typical amino acids and its impact on the formation of trihalomethanes, haloacetonitriles and haloacetamides during chlor(am)ination.
    Zhang R; Wang F; Chu W; Fang C; Wang H; Hou M; Xiao R; Ji G
    Water Res; 2019 Aug; 159():55-64. PubMed ID: 31078752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and control of C- and N-DBPs during disinfection of filter backwash and sedimentation sludge water in drinking water treatment.
    Qian Y; Chen Y; Hu Y; Hanigan D; Westerhoff P; An D
    Water Res; 2021 Apr; 194():116964. PubMed ID: 33652228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation of carbonaceous disinfectants by-products precursors and their correlation with molecular characteristics of dissolved organic matter and microbial communities in a raw water distribution system.
    Wang Y; Xu H; Shen Z; Liu C; Ding M; Lin T; Tao H; Chen W
    Chemosphere; 2021 Nov; 283():131180. PubMed ID: 34467942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of iodo-trihalomethanes, iodo-haloacetic acids, and haloacetaldehydes during chlorination and chloramination of iodine containing waters in laboratory controlled reactions.
    Postigo C; Richardson SD; Barceló D
    J Environ Sci (China); 2017 Aug; 58():127-134. PubMed ID: 28774601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and control of nitrogenous DBPs from Western Australian source waters: Investigating the impacts of high nitrogen and bromide concentrations.
    Kristiana I; Liew D; Henderson RK; Joll CA; Linge KL
    J Environ Sci (China); 2017 Aug; 58():102-115. PubMed ID: 28774599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater.
    Szczuka A; Parker KM; Harvey C; Hayes E; Vengosh A; Mitch WA
    Water Res; 2017 Oct; 122():633-644. PubMed ID: 28646800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.