These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31842306)

  • 1. The Use of Wearable Sensors in Human Movement Analysis in Non-Swimming Aquatic Activities: A Systematic Review.
    Marinho DA; Neiva HP; Morais JE
    Int J Environ Res Public Health; 2019 Dec; 16(24):. PubMed ID: 31842306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable inertial sensors in swimming motion analysis: a systematic review.
    de Magalhaes FA; Vannozzi G; Gatta G; Fantozzi S
    J Sports Sci; 2015; 33(7):732-45. PubMed ID: 25356682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic review.
    Fong DT; Chan YY
    Sensors (Basel); 2010; 10(12):11556-65. PubMed ID: 22163542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches.
    Picerno P
    Gait Posture; 2017 Jan; 51():239-246. PubMed ID: 27833057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable systems for shoulder kinematics assessment: a systematic review.
    Carnevale A; Longo UG; Schena E; Massaroni C; Lo Presti D; Berton A; Candela V; Denaro V
    BMC Musculoskelet Disord; 2019 Nov; 20(1):546. PubMed ID: 31731893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Use of Wearable Microsensors to Quantify Sport-Specific Movements.
    Chambers R; Gabbett TJ; Cole MH; Beard A
    Sports Med; 2015 Jul; 45(7):1065-81. PubMed ID: 25834998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Role of Wearable Technology in Sport Kinematics and Kinetics: A Systematic Review.
    Adesida Y; Papi E; McGregor AH
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wearable technology for spine movement assessment: A systematic review.
    Papi E; Koh WS; McGregor AH
    J Biomech; 2017 Nov; 64():186-197. PubMed ID: 29102267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearables for Running Gait Analysis: A Systematic Review.
    Mason R; Pearson LT; Barry G; Young F; Lennon O; Godfrey A; Stuart S
    Sports Med; 2023 Jan; 53(1):241-268. PubMed ID: 36242762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of upper limb use in children with typical development and neurodevelopmental disorders by inertial sensors: a systematic review.
    Braito I; Maselli M; Sgandurra G; Inguaggiato E; Beani E; Cecchi F; Cioni G; Boyd R
    J Neuroeng Rehabil; 2018 Nov; 15(1):94. PubMed ID: 30400992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable technologies for monitoring aquatic exercises: A systematic review.
    Monoli C; Tuhtan JA; Piccinini L; Galli M
    Clin Rehabil; 2023 Jun; 37(6):791-807. PubMed ID: 36437591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of Wearable Sensor Systems for Monitoring Body Movements of Neonates.
    Chen H; Xue M; Mei Z; Bambang Oetomo S; Chen W
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable Kinematic Monitoring System Based on Piezocapacitive Sensors.
    Frediani G; Botondi B; Quartini L; Zonfrillo G; Bocchi L; Carpi F
    Stud Health Technol Inform; 2019; 261():103-108. PubMed ID: 31156099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable inertial sensors for human movement analysis.
    Iosa M; Picerno P; Paolucci S; Morone G
    Expert Rev Med Devices; 2016 Jul; 13(7):641-59. PubMed ID: 27309490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application-Based Production and Testing of a Core-Sheath Fiber Strain Sensor for Wearable Electronics: Feasibility Study of Using the Sensors in Measuring Tri-Axial Trunk Motion Angles.
    Rezaei A; Cuthbert TJ; Gholami M; Menon C
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31623321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable Sensor Clothing for Body Movement Measurement during Physical Activities in Healthcare.
    Ancans A; Greitans M; Cacurs R; Banga B; Rozentals A
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors--A validity study.
    Ertzgaard P; Ă–hberg F; Gerdle B; Grip H
    Man Ther; 2016 Feb; 21():241-9. PubMed ID: 26456185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new platform based on IEEE802.15.4 wireless inertial sensors for motion caption and assessment.
    Brunetti F; Moreno JC; Ruiz AF; Rocon E; Pons JL
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6497-500. PubMed ID: 17959435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive Estimation of Joint Moments with Inertial Sensor System for Analysis of STS Rehabilitation Training.
    Liu K; Yan J; Liu Y; Ye M
    J Healthc Eng; 2018; 2018():6570617. PubMed ID: 29610656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.