These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31842342)

  • 21. Influence of different processing techniques on the mechanical properties of used tires in embankment construction.
    Edinçliler A; Baykal G; Saygili A
    Waste Manag; 2010 Jun; 30(6):1073-80. PubMed ID: 20060280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microparticle Size and Quantities Effect on the Mechanical Features of End of Life Tires in Thermoplastic Composites.
    Marín-Genescà M; García-Amorós J; Mujal-Rosas R; Massagués Vidal L; Colom Fajula X
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Best Practice for De-Vulcanization of Waste Passenger Car Tire Rubber Granulate Using 2-2
    van Hoek H; Noordermeer J; Heideman G; Blume A; Dierkes W
    Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33918356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rubber tire leachates in the aquatic environment.
    Evans JJ
    Rev Environ Contam Toxicol; 1997; 151():67-115. PubMed ID: 9216257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the pyrolysis kinetics of scrap automotive tires.
    Chen JH; Chen KS; Tong LY
    J Hazard Mater; 2001 Jun; 84(1):43-55. PubMed ID: 11376883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental Impact Prediction of a New Tire Vulcanization Activator.
    Hennequin T; van Vlimmeren L; Mostoni S; Pomilla FR; Scotti R; Stauch C; van der Hulst MK; Huijbregts MAJ; van Zelm R
    ACS Sustain Chem Eng; 2024 Apr; 12(16):6102-6110. PubMed ID: 38665801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rubber/crete: Mechanical properties of scrap to reuse tire-derived rubber in concrete; A review.
    Valente M; Sibai A
    J Appl Biomater Funct Mater; 2019; 17(1S):2280800019835486. PubMed ID: 31215315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Car and truck tire wear particles in complex environmental samples - A quantitative comparison with "traditional" microplastic polymer mass loads.
    Goßmann I; Halbach M; Scholz-Böttcher BM
    Sci Total Environ; 2021 Jun; 773():145667. PubMed ID: 33940753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ecotoxicology of micronized tire rubber: Past, present and future considerations.
    Halle LL; Palmqvist A; Kampmann K; Khan FR
    Sci Total Environ; 2020 Mar; 706():135694. PubMed ID: 31785900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Building-Integrated Photovoltaic/Thermal (BIPVT): LCA of a façade-integrated prototype and issues about human health, ecosystems, resources.
    Lamnatou C; Smyth M; Chemisana D
    Sci Total Environ; 2019 Apr; 660():1576-1592. PubMed ID: 30743949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Giving a Second Opportunity to Tire Waste: An Alternative Path for the Development of Sustainable Self-Healing Styrene-Butadiene Rubber Compounds Overcoming the Magic Triangle of Tires.
    Araujo-Morera J; Hernández Santana M; Verdejo R; López-Manchado MA
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31861160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Are eco-friendly "green" tires also chemically green? Comparing metals, rubbers and selected organic compounds in green and conventional tires.
    Rødland ES; Binda G; Spanu D; Carnati S; Bjerke LR; Nizzetto L
    J Hazard Mater; 2024 Jun; 476():135042. PubMed ID: 38944996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on the Mechanical Properties of Rubber Asphalt by Molecular Dynamics Simulation.
    Guo F; Zhang J; Pei J; Zhou B; Hu Z
    J Mol Model; 2019 Nov; 25(12):365. PubMed ID: 31776794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitivity analysis in a life cycle assessment of an aged red wine production from Catalonia, Spain.
    Meneses M; Torres CM; Castells F
    Sci Total Environ; 2016 Aug; 562():571-579. PubMed ID: 27110971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic probabilistic material flow analysis of rubber release from tires into the environment.
    Sieber R; Kawecki D; Nowack B
    Environ Pollut; 2020 Mar; 258():113573. PubMed ID: 31838384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sustainable mobility: The route of tires through the circular economy model.
    Araujo-Morera J; Verdejo R; López-Manchado MA; Hernández Santana M
    Waste Manag; 2021 May; 126():309-322. PubMed ID: 33794443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leaching of DOC, DN, and inorganic constituents from scrap tires.
    Selbes M; Yilmaz O; Khan AA; Karanfil T
    Chemosphere; 2015 Nov; 139():617-23. PubMed ID: 25712610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Life cycle assessment part 2: current impact assessment practice.
    Pennington DW; Potting J; Finnveden G; Lindeijer E; Jolliet O; Rydberg T; Rebitzer G
    Environ Int; 2004 Jul; 30(5):721-39. PubMed ID: 15051247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction of a test embankment using a sand-tire shred mixture as fill material.
    Yoon S; Prezzi M; Siddiki NZ; Kim B
    Waste Manag; 2006; 26(9):1033-44. PubMed ID: 16343890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental and computational hazard prediction associated with reuse of recycled car tire material.
    Kida M; Ziembowicz S; Pochwat K; Koszelnik P
    J Hazard Mater; 2022 Sep; 438():129489. PubMed ID: 35785743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.