BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31842417)

  • 1. In-Situ Dynamic Response Measurement for Damage Quantification of 3D Printed ABS Cantilever Beam under Thermomechanical Load.
    Baqasah H; He F; Zai BA; Asif M; Khan KA; Thakur VK; Khan MA
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31842417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interdependencies between Dynamic Response and Crack Growth in a 3D-Printed Acrylonitrile Butadiene Styrene (ABS) Cantilever Beam under Thermo-Mechanical Loads.
    He F; Khan M; Aldosari S
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling and Investigation of Crack Growth for 3D-Printed Acrylonitrile Butadiene Styrene (ABS) with Various Printing Parameters and Ambient Temperatures.
    Alshammari YLA; He F; Khan MA
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain Release Behaviour during Crack Growth of a Polymeric Beam under Elastic Loads for Self-Healing.
    Almutairi MD; Alnahdi SS; Khan MA
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Empirical Torsional Spring Model for the Inclined Crack in a 3D-Printed Acrylonitrile Butadiene Styrene (ABS) Cantilever Beam.
    Yang Z; He F; Khan M
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Printing Parameters on the Fatigue Behaviour of 3D-Printed ABS under Dynamic Thermo-Mechanical Loads.
    He F; Khan M
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Dynamic Response in Inclined Transverse Crack Inspection for 3D-Printed Polymeric Beam with Metal Stiffener.
    Francese A; Khan M; He F
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static and Dynamic Mechanical Properties of 3D Printed ABS as a Function of Raster Angle.
    Galeja M; Hejna A; Kosmela P; Kulawik A
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Influence of Microstructural Arrangement on the Failure Characteristics of 3D-Printed Polymers: Exploring Damage Behaviour in Acrylonitrile Butadiene Styrene.
    Guessasma S; Belhabib S
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FDM technology and the effect of printing parameters on the tensile strength of ABS parts.
    Daly M; Tarfaoui M; Chihi M; Bouraoui C
    Int J Adv Manuf Technol; 2023; 126(11-12):5307-5323. PubMed ID: 37252263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printing of surgical instruments for long-duration space missions.
    Wong JY; Pfahnl AC
    Aviat Space Environ Med; 2014 Jul; 85(7):758-63. PubMed ID: 25022166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Post-Processing of 3D-Printed ABS Parts.
    Khosravani MR; Schüürmann J; Berto F; Reinicke T
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34067991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Reinforcements and 3-D Printing Parameters on the Microstructure and Mechanical Properties of Acrylonitrile Butadiene Styrene (ABS) Polymer Composites.
    Vakharia VS; Singh M; Salem A; Halbig MC; Salem JA
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS.
    Wu W; Geng P; Li G; Zhao D; Zhang H; Zhao J
    Materials (Basel); 2015 Sep; 8(9):5834-5846. PubMed ID: 28793537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of Fatigue Performance of FDM ABS and Nylon Printed Parts.
    Yankin A; Serik G; Danenova S; Alipov Y; Temirgali A; Talamona D; Perveen A
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Machine Learning Approach to Model Interdependencies between Dynamic Response and Crack Propagation.
    Fleet T; Kamei K; He F; Khan MA; Khan KA; Starr A
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33266048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can a Black-Box AI Replace Costly DMA Testing?-A Case Study on Prediction and Optimization of Dynamic Mechanical Properties of 3D Printed Acrylonitrile Butadiene Styrene.
    Vahed R; Zareie Rajani HR; Milani AS
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductive Additive Manufactured Acrylonitrile Butadiene Styrene Filaments: Statistical Approach to Mechanical and Electrical Behaviors.
    Ulkir O
    3D Print Addit Manuf; 2023 Dec; 10(6):1423-1438. PubMed ID: 38116220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On Laminated Object Manufactured FDM-Printed ABS/TPU Multimaterial Specimens: An Insight into Mechanical and Morphological Characteristics.
    Kumar S; Singh I; R Koloor SS; Kumar D; Yahya MY
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36236014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Vibration Damping and Compression Properties of a Lattice Structure.
    Monkova K; Vasina M; Zaludek M; Monka PP; Tkac J
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33803878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.