These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 31842491)

  • 1. RSM-GA Based Optimization of Bacterial PHA Production and
    Rao A; Haque S; El-Enshasy HA; Singh V; Mishra BN
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31842491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization and characterization of PHA from isolate Pannonibacter phragmitetus ERC8 using glycerol waste.
    Ray S; Prajapati V; Patel K; Trivedi U
    Int J Biol Macromol; 2016 May; 86():741-9. PubMed ID: 26851207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of Polyhydroxyalkanoates (PHAs) by the Valorization of Biomass and Synthetic Waste.
    Javaid H; Nawaz A; Riaz N; Mukhtar H; -Ul-Haq I; Shah KA; Khan H; Naqvi SM; Shakoor S; Rasool A; Ullah K; Manzoor R; Kaleem I; Murtaza G
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33255864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyhydroxyalkanoate (PHA) biosynthesis from directly valorized ragi husk and sesame oil cake by Bacillus megaterium strain Ti3: Statistical optimization and characterization.
    Israni N; Shivakumar S
    Int J Biol Macromol; 2020 Apr; 148():20-30. PubMed ID: 31926923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity.
    Manso Cobos I; Ibáñez García MI; de la Peña Moreno F; Sáez Melero LP; Luque-Almagro VM; Castillo Rodríguez F; Roldán Ruiz MD; Prieto Jiménez MA; Moreno Vivián C
    Microb Cell Fact; 2015 Jun; 14():77. PubMed ID: 26055753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in cyanobacterial polyhydroxyalkanoates production.
    Singh AK; Mallick N
    FEMS Microbiol Lett; 2017 Nov; 364(20):. PubMed ID: 28961962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyhydroxyalkanoate synthesis by bacteria isolated from landfill and ETP with pomegranate peels as carbon source.
    Rayasam V; Chavan P; Kumar T
    Arch Microbiol; 2020 Dec; 202(10):2799-2808. PubMed ID: 32747997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of cultivation medium and cyclic fed-batch fermentation strategy for enhanced polyhydroxyalkanoate production by Bacillus thuringiensis using a glucose-rich hydrolyzate.
    Singh S; Sithole B; Lekha P; Permaul K; Govinden R
    Bioresour Bioprocess; 2021 Jan; 8(1):11. PubMed ID: 38650248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production?
    Khatami K; Perez-Zabaleta M; Owusu-Agyeman I; Cetecioglu Z
    Waste Manag; 2021 Jan; 119():374-388. PubMed ID: 33139190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nutritional supplements on bio-plastics (PHB) production utilizing sugar refinery waste with potential application in food packaging.
    Tripathi AD; Raj Joshi T; Kumar Srivastava S; Darani KK; Khade S; Srivastava J
    Prep Biochem Biotechnol; 2019; 49(6):567-577. PubMed ID: 30929621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced peroxisomal citrate synthase activity increases substrate availability for polyhydroxyalkanoate biosynthesis in plant peroxisomes.
    Tilbrook K; Poirier Y; Gebbie L; Schenk PM; McQualter RB; Brumbley SM
    Plant Biotechnol J; 2014 Oct; 12(8):1044-52. PubMed ID: 24944109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response surface methodology optimization of polyhydroxyalkanoate production by Burkholderia cepacia BPT1213 using waste glycerol from palm oil-based biodiesel production.
    Mohd Zain NF; Paramasivam M; Tan JS; Lim V; Lee CK
    Biotechnol Prog; 2021 Jan; 37(1):e3077. PubMed ID: 32894656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potato Peel Waste as an Economic Feedstock for PHA Production by Bacillus circulans.
    Kag S; Kumar P; Kataria R
    Appl Biochem Biotechnol; 2024 May; 196(5):2451-2465. PubMed ID: 37776440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams.
    Ganesh Saratale R; Cho SK; Dattatraya Saratale G; Kadam AA; Ghodake GS; Kumar M; Naresh Bharagava R; Kumar G; Su Kim D; Mulla SI; Seung Shin H
    Bioresour Technol; 2021 Apr; 325():124685. PubMed ID: 33508681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: evidence of an atypical metabolism in Bacillus megaterium DSM 509.
    Shahid S; Mosrati R; Ledauphin J; Amiel C; Fontaine P; Gaillard JL; Corroler D
    J Biosci Bioeng; 2013 Sep; 116(3):302-8. PubMed ID: 23548274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconversion of glycerol into polyhydroxyalkanoates through an atypical metabolism shift using Priestia megaterium during fermentation processes: A statistical analysis of carbon and nitrogen source concentrations.
    Shahid S; Mosrati R; Corroler D; Amiel C; Gaillard JL
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128116. PubMed ID: 37979765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient production of polyhydroxyalkanoates (PHAs) from Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) as the sole carbon source.
    Chanasit W; Hodgson B; Sudesh K; Umsakul K
    Biosci Biotechnol Biochem; 2016 Jul; 80(7):1440-50. PubMed ID: 26981955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microalgae as source of polyhydroxyalkanoates (PHAs) - A review.
    Costa SS; Miranda AL; de Morais MG; Costa JAV; Druzian JI
    Int J Biol Macromol; 2019 Jun; 131():536-547. PubMed ID: 30885732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and characterization of polyhydroxyalkanoates from industrial waste using soil bacterial isolates.
    Shah S; Kumar A
    Braz J Microbiol; 2021 Jun; 52(2):715-726. PubMed ID: 33590449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.
    Benesova P; Kucera D; Marova I; Obruca S
    Lett Appl Microbiol; 2017 Aug; 65(2):182-188. PubMed ID: 28585326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.