These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

897 related articles for article (PubMed ID: 31842998)

  • 1. The superiority of conditioned medium derived from rapidly expanded mesenchymal stem cells for neural repair.
    Chen YT; Tsai MJ; Hsieh N; Lo MJ; Lee MJ; Cheng H; Huang WC
    Stem Cell Res Ther; 2019 Dec; 10(1):390. PubMed ID: 31842998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of hepatocyte growth factor in mesenchymal stem cell-induced recovery in spinal cord injured rats.
    Song P; Han T; Xiang X; Wang Y; Fang H; Niu Y; Shen C
    Stem Cell Res Ther; 2020 May; 11(1):178. PubMed ID: 32410702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced axonal regeneration by transplanted Wnt3a-secreting human mesenchymal stem cells in a rat model of spinal cord injury.
    Seo DK; Kim JH; Min J; Yoon HH; Shin ES; Kim SW; Jeon SR
    Acta Neurochir (Wien); 2017 May; 159(5):947-957. PubMed ID: 28160063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Mesenchymal Stromal Cells Isolated from Murine Adipose Tissue and Bone Marrow in the Treatment of Spinal Cord Injury.
    Takahashi A; Nakajima H; Uchida K; Takeura N; Honjoh K; Watanabe S; Kitade M; Kokubo Y; Johnson WEB; Matsumine A
    Cell Transplant; 2018 Jul; 27(7):1126-1139. PubMed ID: 29947256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of induced pluripotent stem cell-derived motor neuron progenitor cells with irradiated brain-derived neurotrophic factor over-expressing engineered mesenchymal stem cells enhanced restoration of axonal regeneration in a chronic spinal cord injury rat model.
    Kim JW; Kim J; Lee SM; Rim YA; Sung YC; Nam Y; Kim HJ; Kim H; Jung SI; Lim J; Ju JH
    Stem Cell Res Ther; 2024 Jun; 15(1):173. PubMed ID: 38886817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Wharton Jelly-Derived Mesenchymal Stromal Cells and Their Conditioned Media in the Treatment of a Rat Spinal Cord Injury.
    Chudickova M; Vackova I; Machova Urdzikova L; Jancova P; Kekulova K; Rehorova M; Turnovcova K; Jendelova P; Kubinova S
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31547264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stepwise combined cell transplantation using mesenchymal stem cells and induced pluripotent stem cell-derived motor neuron progenitor cells in spinal cord injury.
    Kim JW; Kim J; Mo H; Han H; Rim YA; Ju JH
    Stem Cell Res Ther; 2024 Apr; 15(1):114. PubMed ID: 38650015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-Transplantation of Human Umbilical Cord Mesenchymal Stem Cells and Human Neural Stem Cells Improves the Outcome in Rats with Spinal Cord Injury.
    Sun L; Wang F; Chen H; Liu D; Qu T; Li X; Xu D; Liu F; Yin Z; Chen Y
    Cell Transplant; 2019 Jul; 28(7):893-906. PubMed ID: 31012325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro.
    Peng J; Wang Y; Zhang L; Zhao B; Zhao Z; Chen J; Guo Q; Liu S; Sui X; Xu W; Lu S
    Brain Res Bull; 2011 Feb; 84(3):235-43. PubMed ID: 21194558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An In Vitro Comparison of the Neurotrophic and Angiogenic Activity of Human and Canine Adipose-Derived Mesenchymal Stem Cells (MSCs): Translating MSC-Based Therapies for Spinal Cord Injury.
    Delfi IRTA; Wood CR; Johnson LDV; Snow MD; Innes JF; Myint P; Johnson WEB
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32916959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of bone marrow derived mesenchymal stromal cells and Schwann-like cells transplantation on spinal cord injury in adult male albino rats.
    Galhom RA; Hussein Abd El Raouf HH; Mohammed Ali MH
    Biomed Pharmacother; 2018 Dec; 108():1365-1375. PubMed ID: 30372839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury.
    Stewart AN; Matyas JJ; Welchko RM; Goldsmith AD; Zeiler SE; Hochgeschwender U; Lu M; Nan Z; Rossignol J; Dunbar GL
    Restor Neurol Neurosci; 2017; 35(4):395-411. PubMed ID: 28598857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats.
    Ding Y; Yan Q; Ruan JW; Zhang YQ; Li WJ; Zhang YJ; Li Y; Dong H; Zeng YS
    BMC Neurosci; 2009 Apr; 10():35. PubMed ID: 19374777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autocrine fibronectin from differentiating mesenchymal stem cells induces the neurite elongation in vitro and promotes nerve fiber regeneration in transected spinal cord injury.
    Zeng X; Ma YH; Chen YF; Qiu XC; Wu JL; Ling EA; Zeng YS
    J Biomed Mater Res A; 2016 Aug; 104(8):1902-11. PubMed ID: 26991461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subarachnoid transplantation of human umbilical cord mesenchymal stem cell in rodent model with subacute incomplete spinal cord injury: Preclinical safety and efficacy study.
    Yang Y; Cao TT; Tian ZM; Gao H; Wen HQ; Pang M; He WJ; Wang NX; Chen YY; Wang Y; Li H; Lin JW; Kang Z; Li MM; Liu B; Rong LM
    Exp Cell Res; 2020 Oct; 395(2):112184. PubMed ID: 32707134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditioned medium-enriched umbilical cord mesenchymal stem cells: a potential therapeutic strategy for spinal cord injury, unveiling transcriptomic and secretomic insights.
    Subbarayan R; Murugan Girija D; Raja STK; Krishnamoorthy A; Srinivasan D; Shrestha R; Srivastava N; Ranga Rao S
    Mol Biol Rep; 2024 Apr; 51(1):570. PubMed ID: 38658405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive Effects of Suppression of MicroRNA-383 in Human Bone-Marrow-Derived Mesenchymal Stem Cells on Treating Spinal Cord Injury.
    Wei GJ; Zheng KW; An G; Shi ZW; Wang KF; Guan Y; Wang YS; Li PF; Dong DM
    Cell Physiol Biochem; 2018; 47(1):129-139. PubMed ID: 29763918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human mesenchymal stem cell-derived Schwann cell-like cells exhibit neurotrophic effects, via distinct growth factor production, in a model of spinal cord injury.
    Park HW; Lim MJ; Jung H; Lee SP; Paik KS; Chang MS
    Glia; 2010 Jul; 58(9):1118-32. PubMed ID: 20468053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury.
    Sasaki M; Radtke C; Tan AM; Zhao P; Hamada H; Houkin K; Honmou O; Kocsis JD
    J Neurosci; 2009 Nov; 29(47):14932-41. PubMed ID: 19940189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton's jelly, and umbilical cord blood for treating spinal cord injuries in dogs.
    Ryu HH; Kang BJ; Park SS; Kim Y; Sung GJ; Woo HM; Kim WH; Kweon OK
    J Vet Med Sci; 2012 Dec; 74(12):1617-30. PubMed ID: 22878503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.