These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 31843054)
1. Combining genomics and epidemiology to analyse bi-directional transmission of Crispell J; Benton CH; Balaz D; De Maio N; Ahkmetova A; Allen A; Biek R; Presho EL; Dale J; Hewinson G; Lycett SJ; Nunez-Garcia J; Skuce RA; Trewby H; Wilson DJ; Zadoks RN; Delahay RJ; Kao RR Elife; 2019 Dec; 8():. PubMed ID: 31843054 [TBL] [Abstract][Full Text] [Related]
2. Badgers as a potential source of bovine tuberculosis - first studies in Poland. Lipiec M; Nowakowski K; Radulski Ł; Iwaniak W; Ważna A Ann Agric Environ Med; 2018 Sep; 25(3):409-410. PubMed ID: 30260200 [TBL] [Abstract][Full Text] [Related]
3. Estimating the risk of cattle exposure to tuberculosis posed by wild deer relative to badgers in England and Wales. Ward AI; Smith GC; Etherington TR; Delahay RJ J Wildl Dis; 2009 Oct; 45(4):1104-20. PubMed ID: 19901384 [TBL] [Abstract][Full Text] [Related]
4. Genomic epidemiology of Akhmetova A; Guerrero J; McAdam P; Salvador LCM; Crispell J; Lavery J; Presho E; Kao RR; Biek R; Menzies F; Trimble N; Harwood R; Pepler PT; Oravcova K; Graham J; Skuce R; du Plessis L; Thompson S; Wright L; Byrne AW; Allen AR Microb Genom; 2023 May; 9(5):. PubMed ID: 37227264 [TBL] [Abstract][Full Text] [Related]
7. The variability and seasonality of the environmental reservoir of Mycobacterium bovis shed by wild European badgers. King HC; Murphy A; James P; Travis E; Porter D; Hung YJ; Sawyer J; Cork J; Delahay RJ; Gaze W; Courtenay O; Wellington EM Sci Rep; 2015 Aug; 5():12318. PubMed ID: 26247348 [TBL] [Abstract][Full Text] [Related]
8. Analysis of a multi-type resurgence of Mycobacterium bovis in cattle and badgers in Southwest France, 2007-2019. Bouchez-Zacria M; Ruette S; Richomme C; Lesellier S; Payne A; Boschiroli ML; Courcoul A; Durand B Vet Res; 2023 May; 54(1):41. PubMed ID: 37138355 [TBL] [Abstract][Full Text] [Related]
9. A new phylodynamic model of Mycobacterium bovis transmission in a multi-host system uncovers the role of the unobserved reservoir. O'Hare A; Balaz D; Wright DM; McCormick C; McDowell S; Trewby H; Skuce RA; Kao RR PLoS Comput Biol; 2021 Jun; 17(6):e1009005. PubMed ID: 34170901 [TBL] [Abstract][Full Text] [Related]
10. Inferring Mycobacterium bovis transmission between cattle and badgers using isolates from the Randomised Badger Culling Trial. van Tonder AJ; Thornton MJ; Conlan AJK; Jolley KA; Goolding L; Mitchell AP; Dale J; Palkopoulou E; Hogarth PJ; Hewinson RG; Wood JLN; Parkhill J PLoS Pathog; 2021 Nov; 17(11):e1010075. PubMed ID: 34843579 [TBL] [Abstract][Full Text] [Related]
11. Localized reactive badger culling increases risk of bovine tuberculosis in nearby cattle herds. Vial F; Donnelly CA Biol Lett; 2012 Feb; 8(1):50-3. PubMed ID: 21752812 [TBL] [Abstract][Full Text] [Related]
12. A Bayesian evolutionary model towards understanding wildlife contribution to F4-family Mycobacterium bovis transmission in the South-West of France. Duault H; Michelet L; Boschiroli ML; Durand B; Canini L Vet Res; 2022 Apr; 53(1):28. PubMed ID: 35366933 [TBL] [Abstract][Full Text] [Related]
13. Eliminating bovine tuberculosis in cattle and badgers: insight from a dynamic model. Brooks-Pollock E; Wood JL Proc Biol Sci; 2015 Jun; 282(1808):20150374. PubMed ID: 25972466 [TBL] [Abstract][Full Text] [Related]
14. Is Mycobacterium bovis in the environment important for the persistence of bovine tuberculosis? Courtenay O; Reilly LA; Sweeney FP; Hibberd V; Bryan S; Ul-Hassan A; Newman C; Macdonald DW; Delahay RJ; Wilson GJ; Wellington EM Biol Lett; 2006 Sep; 2(3):460-2. PubMed ID: 17148430 [TBL] [Abstract][Full Text] [Related]
15. Using whole genome sequencing to investigate transmission in a multi-host system: bovine tuberculosis in New Zealand. Crispell J; Zadoks RN; Harris SR; Paterson B; Collins DM; de-Lisle GW; Livingstone P; Neill MA; Biek R; Lycett SJ; Kao RR; Price-Carter M BMC Genomics; 2017 Feb; 18(1):180. PubMed ID: 28209138 [TBL] [Abstract][Full Text] [Related]
17. Disease management at the wildlife-livestock interface: Using whole-genome sequencing to study the role of elk in Mycobacterium bovis transmission in Michigan, USA. Salvador LCM; O'Brien DJ; Cosgrove MK; Stuber TP; Schooley AM; Crispell J; Church SV; Gröhn YT; Robbe-Austerman S; Kao RR Mol Ecol; 2019 May; 28(9):2192-2205. PubMed ID: 30807679 [TBL] [Abstract][Full Text] [Related]
18. Spatial relationship between Mycobacterium bovis strains in cattle and badgers in four areas in Ireland. Olea-Popelka FJ; Flynn O; Costello E; McGrath G; Collins JD; O'keeffe J; Kelton DF; Berke O; Martin SW Prev Vet Med; 2005 Sep; 71(1-2):57-70. PubMed ID: 15993963 [TBL] [Abstract][Full Text] [Related]
19. The effectiveness of bovine tuberculosis surveillance in Dutch badgers. Orrico M; van Schaik G; Koets A; van den Broek J; Montizaan M; La Haye M; Rijks JM Transbound Emerg Dis; 2022 Jul; 69(4):2008-2020. PubMed ID: 34110708 [TBL] [Abstract][Full Text] [Related]
20. Model of Selective and Non-Selective Management of Badgers (Meles meles) to Control Bovine Tuberculosis in Badgers and Cattle. Smith GC; Delahay RJ; McDonald RA; Budgey R PLoS One; 2016; 11(11):e0167206. PubMed ID: 27893809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]