These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 31843448)

  • 1. biAb Mediated Restoration of the Linkage between Dystroglycan and Laminin-211 as a Therapeutic Approach for α-Dystroglycanopathies.
    Gumlaw N; Sevigny LM; Zhao H; Luo Z; Bangari DS; Masterjohn E; Chen Y; McDonald B; Magnay M; Travaline T; Yoshida-Moriguchi T; Fan W; Reczek D; Stefano JE; Qiu H; Beil C; Lange C; Rao E; Lukason M; Barry E; Brondyk WH; Zhu Y; Cheng SH
    Mol Ther; 2020 Feb; 28(2):664-676. PubMed ID: 31843448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy.
    Kanagawa M; Nishimoto A; Chiyonobu T; Takeda S; Miyagoe-Suzuki Y; Wang F; Fujikake N; Taniguchi M; Lu Z; Tachikawa M; Nagai Y; Tashiro F; Miyazaki J; Tajima Y; Takeda S; Endo T; Kobayashi K; Campbell KP; Toda T
    Hum Mol Genet; 2009 Feb; 18(4):621-31. PubMed ID: 19017726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prenatal muscle development in a mouse model for the secondary dystroglycanopathies.
    Kim J; Hopkinson M; Kavishwar M; Fernandez-Fuente M; Brown SC
    Skelet Muscle; 2016; 6():3. PubMed ID: 26900448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pikachurin interaction with dystroglycan is diminished by defective O-mannosyl glycosylation in congenital muscular dystrophy models and rescued by LARGE overexpression.
    Hu H; Li J; Zhang Z; Yu M
    Neurosci Lett; 2011 Feb; 489(1):10-5. PubMed ID: 21129441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The modulation of skeletal muscle glycosylation as a potential therapeutic intervention in muscular dystrophies.
    Brockington M; Muntoni F
    Acta Myol; 2005 Dec; 24(3):217-21. PubMed ID: 16629056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defects in glycosylation impair satellite stem cell function and niche composition in the muscles of the dystrophic Large(myd) mouse.
    Ross J; Benn A; Jonuschies J; Boldrin L; Muntoni F; Hewitt JE; Brown SC; Morgan JE
    Stem Cells; 2012 Oct; 30(10):2330-41. PubMed ID: 22887880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic aspects of the formation of α-dystroglycan and therapeutic research for the treatment of α-dystroglycanopathy: A review.
    Taniguchi-Ikeda M; Morioka I; Iijima K; Toda T
    Mol Aspects Med; 2016 Oct; 51():115-24. PubMed ID: 27421908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscular dystrophy associated with alpha-dystroglycan deficiency in Sphynx and Devon Rex cats.
    Martin PT; Shelton GD; Dickinson PJ; Sturges BK; Xu R; LeCouteur RA; Guo LT; Grahn RA; Lo HP; North KN; Malik R; Engvall E; Lyons LA
    Neuromuscul Disord; 2008 Dec; 18(12):942-52. PubMed ID: 18990577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new monoclonal antibody DAG-6F4 against human alpha-dystroglycan reveals reduced core protein in some, but not all, dystroglycanopathy patients.
    Humphrey EL; Lacey E; Le LT; Feng L; Sciandra F; Morris CR; Hewitt JE; Holt I; Brancaccio A; Barresi R; Sewry CA; Brown SC; Morris GE
    Neuromuscul Disord; 2015 Jan; 25(1):32-42. PubMed ID: 25387694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soleus muscle in glycosylation-deficient muscular dystrophy is protected from contraction-induced injury.
    Gumerson JD; Kabaeva ZT; Davis CS; Faulkner JA; Michele DE
    Am J Physiol Cell Physiol; 2010 Dec; 299(6):C1430-40. PubMed ID: 20844247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberrant glycosylation of alpha-dystroglycan and congenital muscular dystrophies.
    Endo T
    Acta Myol; 2005 Oct; 24(2):64-9. PubMed ID: 16550917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant glycosylation of alpha-dystroglycan causes defective binding of laminin in the muscle of chicken muscular dystrophy.
    Saito F; Blank M; Schröder J; Manya H; Shimizu T; Campbell KP; Endo T; Mizutani M; Kröger S; Matsumura K
    FEBS Lett; 2005 Apr; 579(11):2359-63. PubMed ID: 15848172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Pathomechanism and therapeutic strategy of Fukuyama congenital muscular dystrophy and related disorders].
    Toda T
    Rinsho Shinkeigaku; 2009 Nov; 49(11):859-62. PubMed ID: 20030231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of dysferlin deficiency to skeletal muscle pathology in asymptomatic and severe dystroglycanopathy models: generation of a new model for Fukuyama congenital muscular dystrophy.
    Kanagawa M; Lu Z; Ito C; Matsuda C; Miyake K; Toda T
    PLoS One; 2014; 9(9):e106721. PubMed ID: 25198651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy.
    Beedle AM; Turner AJ; Saito Y; Lueck JD; Foltz SJ; Fortunato MJ; Nienaber PM; Campbell KP
    J Clin Invest; 2012 Sep; 122(9):3330-42. PubMed ID: 22922256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adeno-Associated Virus-Mediated Mini-Agrin Delivery Is Unable to Rescue Disease Phenotype in a Mouse Model of Limb Girdle Muscular Dystrophy Type 2I.
    Vannoy CH; Zhou H; Qiao C; Xiao X; Bang AG; Lu QL
    Am J Pathol; 2017 Feb; 187(2):431-440. PubMed ID: 28107841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defective glycosylation of α-dystroglycan contributes to podocyte flattening.
    Kojima K; Nosaka H; Kishimoto Y; Nishiyama Y; Fukuda S; Shimada M; Kodaka K; Saito F; Matsumura K; Shimizu T; Toda T; Takeda S; Kawachi H; Uchida S
    Kidney Int; 2011 Feb; 79(3):311-6. PubMed ID: 20944549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fukutin-related protein is essential for mouse muscle, brain and eye development and mutation recapitulates the wide clinical spectrums of dystroglycanopathies.
    Chan YM; Keramaris-Vrantsis E; Lidov HG; Norton JH; Zinchenko N; Gruber HE; Thresher R; Blake DJ; Ashar J; Rosenfeld J; Lu QL
    Hum Mol Genet; 2010 Oct; 19(20):3995-4006. PubMed ID: 20675713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies.
    Cirak S; Foley AR; Herrmann R; Willer T; Yau S; Stevens E; Torelli S; Brodd L; Kamynina A; Vondracek P; Roper H; Longman C; Korinthenberg R; Marrosu G; Nürnberg P; ; Michele DE; Plagnol V; Hurles M; Moore SA; Sewry CA; Campbell KP; Voit T; Muntoni F
    Brain; 2013 Jan; 136(Pt 1):269-81. PubMed ID: 23288328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absence of post-phosphoryl modification in dystroglycanopathy mouse models and wild-type tissues expressing non-laminin binding form of α-dystroglycan.
    Kuga A; Kanagawa M; Sudo A; Chan YM; Tajiri M; Manya H; Kikkawa Y; Nomizu M; Kobayashi K; Endo T; Lu QL; Wada Y; Toda T
    J Biol Chem; 2012 Mar; 287(12):9560-7. PubMed ID: 22270369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.