BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31843497)

  • 1. Dominant-negative antagonists of the Ras-ERK pathway: DA-Raf and its related proteins generated by alternative splicing of Raf.
    Endo T
    Exp Cell Res; 2020 Feb; 387(2):111775. PubMed ID: 31843497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DA-Raf, a dominant-negative antagonist of the Ras-ERK pathway, is a putative tumor suppressor.
    Kanno E; Kawasaki O; Takahashi K; Takano K; Endo T
    Exp Cell Res; 2018 Jan; 362(1):111-120. PubMed ID: 29129563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DA-Raf, a dominant-negative regulator of the Ras-ERK pathway, is essential for skeletal myocyte differentiation including myoblast fusion and apoptosis.
    Takahashi K; Itakura E; Takano K; Endo T
    Exp Cell Res; 2019 Mar; 376(2):168-180. PubMed ID: 30742807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DA-Raf1, a competent intrinsic dominant-negative antagonist of the Ras-ERK pathway, is required for myogenic differentiation.
    Yokoyama T; Takano K; Yoshida A; Katada F; Sun P; Takenawa T; Andoh T; Endo T
    J Cell Biol; 2007 Jun; 177(5):781-93. PubMed ID: 17535970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DA-Raf-Mediated Suppression of the Ras--ERK Pathway Is Essential for TGF-β1-Induced Epithelial-Mesenchymal Transition in Alveolar Epithelial Type 2 Cells.
    Watanabe-Takano H; Takano K; Hatano M; Tokuhisa T; Endo T
    PLoS One; 2015; 10(5):e0127888. PubMed ID: 25996975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Splicing factor hnRNP A2 activates the Ras-MAPK-ERK pathway by controlling A-Raf splicing in hepatocellular carcinoma development.
    Shilo A; Ben Hur V; Denichenko P; Stein I; Pikarsky E; Rauch J; Kolch W; Zender L; Karni R
    RNA; 2014 Apr; 20(4):505-15. PubMed ID: 24572810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DA-Raf-dependent inhibition of the Ras-ERK signaling pathway in type 2 alveolar epithelial cells controls alveolar formation.
    Watanabe-Takano H; Takano K; Sakamoto A; Matsumoto K; Tokuhisa T; Endo T; Hatano M
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):E2291-300. PubMed ID: 24843139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. c-Myc regulates RNA splicing of the A-Raf kinase and its activation of the ERK pathway.
    Rauch J; Moran-Jones K; Albrecht V; Schwarzl T; Hunter K; Gires O; Kolch W
    Cancer Res; 2011 Jul; 71(13):4664-74. PubMed ID: 21512137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1.
    Sasaki A; Taketomi T; Kato R; Saeki K; Nonami A; Sasaki M; Kuriyama M; Saito N; Shibuya M; Yoshimura A
    Nat Cell Biol; 2003 May; 5(5):427-32. PubMed ID: 12717443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Langerhans cell histiocytosis: A neoplastic disorder driven by Ras-ERK pathway mutations.
    Tran G; Huynh TN; Paller AS
    J Am Acad Dermatol; 2018 Mar; 78(3):579-590.e4. PubMed ID: 29107340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DA-Raf and the MEK inhibitor trametinib reverse skeletal myocyte differentiation inhibition or muscle atrophy caused by myostatin and GDF11 through the non-Smad Ras-ERK pathway.
    Masuzawa R; Takahashi K; Takano K; Nishino I; Sakai T; Endo T
    J Biochem; 2022 Jan; 171(1):109-122. PubMed ID: 34676394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transcription factor NFAT1 induces apoptosis through cooperation with Ras/Raf/MEK/ERK pathway and upregulation of TNF-α expression.
    Robbs BK; Lucena PI; Viola JP
    Biochim Biophys Acta; 2013 Aug; 1833(8):2016-28. PubMed ID: 23583303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic Validation of Cell Proliferation via Ras-Independent Activation of the Raf/Mek/Erk Pathway.
    Lechuga CG; Simón-Carrasco L; Jacob HK; Drosten M
    Methods Mol Biol; 2017; 1487():269-276. PubMed ID: 27924574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thrombopoietin-mediated sustained activation of extracellular signal-regulated kinase in UT7-Mpl cells requires both Ras-Raf-1- and Rap1-B-Raf-dependent pathways.
    Garcia J; de Gunzburg J; Eychène A; Gisselbrecht S; Porteu F
    Mol Cell Biol; 2001 Apr; 21(8):2659-70. PubMed ID: 11283246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Molecular genetic diagnostics in syndromes associated with the RAS/MAPK signalling pathway].
    Molven A; Søvik O; von der Lippe C; Steine SJ; Njølstad PR; Houge G; Prescott TE
    Tidsskr Nor Laegeforen; 2009 Nov; 129(22):2358-61. PubMed ID: 19935936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Sprouty/Spred family as tumor suppressors: Coming of age.
    Kawazoe T; Taniguchi K
    Cancer Sci; 2019 May; 110(5):1525-1535. PubMed ID: 30874331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinase domain of MEKK1 induces apoptosis by dysregulation of MAP kinase pathways.
    Boldt S; Weidle UH; Kolch W
    Exp Cell Res; 2003 Feb; 283(1):80-90. PubMed ID: 12565821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimerization of the kinase ARAF promotes MAPK pathway activation and cell migration.
    Mooz J; Oberoi-Khanuja TK; Harms GS; Wang W; Jaiswal BS; Seshagiri S; Tikkanen R; Rajalingam K
    Sci Signal; 2014 Aug; 7(337):ra73. PubMed ID: 25097033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CrkL plays a role in SDF-1-induced activation of the Raf-1/MEK/Erk pathway through Ras and Rac to mediate chemotactic signaling in hematopoietic cells.
    Arai A; Aoki M; Weihua Y; Jin A; Miura O
    Cell Signal; 2006 Dec; 18(12):2162-71. PubMed ID: 16781119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential localization of A-Raf regulates MST2-mediated apoptosis during epithelial differentiation.
    Rauch J; Vandamme D; Mack B; McCann B; Volinsky N; Blanco A; Gires O; Kolch W
    Cell Death Differ; 2016 Aug; 23(8):1283-95. PubMed ID: 26891695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.