BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 31844041)

  • 21. Targeting plasma cells improves detection of cytogenetic aberrations in multiple myeloma: phenotype/genotype fluorescence in situ hybridization.
    Slovak ML; Bedell V; Pagel K; Chang KL; Smith D; Somlo G
    Cancer Genet Cytogenet; 2005 Apr; 158(2):99-109. PubMed ID: 15796956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of recurrent chromosomal breakpoints in multiple myeloma with complex karyotypes by combined G-banding, spectral karyotyping, and fluorescence in situ hybridization analyses.
    Sáez B; Martín-Subero JI; Largo C; Martín MC; Odero MD; Prosper F; Siebert R; Calasanz MJ; Cigudosa JC
    Cancer Genet Cytogenet; 2006 Sep; 169(2):143-9. PubMed ID: 16938572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of MYC translocations in multiple myeloma cell lines.
    Dib A; Gabrea A; Glebov OK; Bergsagel PL; Kuehl WM
    J Natl Cancer Inst Monogr; 2008; (39):25-31. PubMed ID: 18647998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The value of fluorescence in situ hybridization for the detection of 11q in multiple myeloma.
    González MB; Hernández JM; García JL; Lumbreras E; Castellanos M; Hernández JM; Fernández-Calvo J; Gutiérrez NC; San Miguel JF
    Haematologica; 2004 Oct; 89(10):1213-8. PubMed ID: 15477206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Whole-genome optical mapping of bone-marrow myeloma cells reveals association of extramedullary multiple myeloma with chromosome 1 abnormalities.
    Kriegova E; Fillerova R; Minarik J; Savara J; Manakova J; Petrackova A; Dihel M; Balcarkova J; Krhovska P; Pika T; Gajdos P; Behalek M; Vasinek M; Papajik T
    Sci Rep; 2021 Jul; 11(1):14671. PubMed ID: 34282158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Whole Exome Sequencing in Multiple Myeloma to Identify Somatic Single Nucleotide Variants and Key Translocations Involving Immunoglobulin Loci and MYC.
    Walker BA
    Methods Mol Biol; 2018; 1792():71-95. PubMed ID: 29797253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescence in situ hybridization analysis of aneuploidization patterns in monoclonal gammopathy of undetermined significance versus multiple myeloma and plasma cell leukemia.
    Rasillo A; Tabernero MD; Sánchez ML; Pérez de Andrés M; Martín Ayuso M; Hernández J; Moro MJ; Fernández-Calvo J; Sayagués JM; Bortoluci A; San Miguel JF; Orfao A
    Cancer; 2003 Feb; 97(3):601-9. PubMed ID: 12548602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequential analysis of chromosome aberrations in multiple myeloma during disease progression.
    Wu KL; Beverloo B; Velthuizen SJ; Sonneveld P
    Clin Lymphoma Myeloma; 2007 Jan; 7(4):280-5. PubMed ID: 17324335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Ig heavy chain gene is frequently involved in chromosomal translocations in multiple myeloma and plasma cell leukemia as detected by in situ hybridization.
    Nishida K; Tamura A; Nakazawa N; Ueda Y; Abe T; Matsuda F; Kashima K; Taniwaki M
    Blood; 1997 Jul; 90(2):526-34. PubMed ID: 9226151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High prevalence of immunoglobulin light chain gene aberrations as revealed by FISH in multiple myeloma and MGUS.
    Türkmen S; Binder A; Gerlach A; Niehage S; Theodora Melissari M; Inandiklioglu N; Dörken B; Burmeister T
    Genes Chromosomes Cancer; 2014 Aug; 53(8):650-6. PubMed ID: 24729354
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of genomic abnormalities in multiple myeloma: the application of FISH analysis in combination with various plasma cell enrichment techniques.
    Hartmann L; Biggerstaff JS; Chapman DB; Scott JM; Johnson KR; Ghirardelli KM; Fritschle WK; Martinez DL; Bennington RK; de Baca ME; Wells DA; Loken MR; Zehentner BK
    Am J Clin Pathol; 2011 Nov; 136(5):712-20. PubMed ID: 22031309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combined cytogenetic testing and fluorescence in situ hybridization analysis in the study of chronic lymphocytic leukemia and multiple myeloma.
    Wiktor A; Van Dyke DL
    Cancer Genet Cytogenet; 2004 Aug; 153(1):73-6. PubMed ID: 15325099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incidence of cytogenetic aberrations in two B lineage subpopulations in multiple myeloma patients analyzed by combination of whole-genome profiling and FISH.
    Smetana J; Dementyeva E; Kryukov F; Nemec P; Greslikova H; Kupska R; Mikulasova A; Ihnatova I; Hajek R; Kuglik P
    Neoplasma; 2014; 61(1):48-55. PubMed ID: 24195508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular cytogenetic aberrations in Tunisian patients with multiple myeloma identified by cIg-FISH in fixed bone marrow cells.
    Gmidène A; Avet-Loiseau H; Sennana H; Ben Abdallah I; Khlif A; Meddeb B; Elloumi M; Saad A
    Cytogenet Genome Res; 2012; 136(1):44-9. PubMed ID: 22188899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of 14q32 rearrangements in multiple myeloma, using simultaneous FISH analysis combined with immunofluorescence.
    Abaza HM; Youssef SR; Saad AA; Kamal GM; Hegazy MG; Ibrahim RI; Annaka LM
    Hematol Oncol Stem Cell Ther; 2015 Jun; 8(2):56-63. PubMed ID: 25929730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive Genomic Profiling Identifies a Subset of Crizotinib-Responsive ALK-Rearranged Non-Small Cell Lung Cancer Not Detected by Fluorescence In Situ Hybridization.
    Ali SM; Hensing T; Schrock AB; Allen J; Sanford E; Gowen K; Kulkarni A; He J; Suh JH; Lipson D; Elvin JA; Yelensky R; Chalmers Z; Chmielecki J; Peled N; Klempner SJ; Firozvi K; Frampton GM; Molina JR; Menon S; Brahmer JR; MacMahon H; Nowak J; Ou SH; Zauderer M; Ladanyi M; Zakowski M; Fischbach N; Ross JS; Stephens PJ; Miller VA; Wakelee H; Ganesan S; Salgia R
    Oncologist; 2016 Jun; 21(6):762-70. PubMed ID: 27245569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High detection rate of clinically relevant genomic abnormalities in plasma cells enriched from patients with multiple myeloma.
    Stevens-Kroef M; Weghuis DO; Croockewit S; Derksen L; Hooijer J; Elidrissi-Zaynoun N; Siepman A; Simons A; Kessel AG
    Genes Chromosomes Cancer; 2012 Nov; 51(11):997-1006. PubMed ID: 22833442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma.
    Shou Y; Martelli ML; Gabrea A; Qi Y; Brents LA; Roschke A; Dewald G; Kirsch IR; Bergsagel PL; Kuehl WM
    Proc Natl Acad Sci U S A; 2000 Jan; 97(1):228-33. PubMed ID: 10618400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Detection of Molecular Cytogenetic Aberrations by Fluorescence in Situ Hybridization in Different Bone Marrow Samples of Multiple Myeloma].
    Wang YF; Wang H; Xi LY; Liu Y; Dong F; Wang JJ; Ke XY
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2015 Oct; 23(5):1352-6. PubMed ID: 26524036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-risk cytogenetics in multiple myeloma: Further scrutiny of deletions within the IGH gene region enhances risk stratification.
    Smith SC; Althof PA; Dave BJ; Sanmann JN
    Genes Chromosomes Cancer; 2020 Oct; 59(10):569-574. PubMed ID: 32447782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.