These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31844043)

  • 1. Colloidal quantum dot molecules manifesting quantum coupling at room temperature.
    Cui J; Panfil YE; Koley S; Shamalia D; Waiskopf N; Remennik S; Popov I; Oded M; Banin U
    Nat Commun; 2019 Dec; 10(1):5401. PubMed ID: 31844043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled Colloidal Quantum Dot Molecules.
    Koley S; Cui J; Panfil YE; Banin U
    Acc Chem Res; 2021 Mar; 54(5):1178-1188. PubMed ID: 33459013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic coupling in colloidal quantum dot molecules; the case of CdSe/CdS core/shell homodimers.
    Panfil YE; Shamalia D; Cui J; Koley S; Banin U
    J Chem Phys; 2019 Dec; 151(22):224501. PubMed ID: 31837660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resilient Pathways to Atomic Attachment of Quantum Dot Dimers and Artificial Solids from Faceted CdSe Quantum Dot Building Blocks.
    Ondry JC; Philbin JP; Lostica M; Rabani E; Alivisatos AP
    ACS Nano; 2019 Nov; 13(11):12322-12344. PubMed ID: 31246407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A room temperature continuous-wave nanolaser using colloidal quantum wells.
    Yang Z; Pelton M; Fedin I; Talapin DV; Waks E
    Nat Commun; 2017 Jul; 8(1):143. PubMed ID: 28747633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Dot Acceptors in Two-Dimensional Epitaxially Fused PbSe Quantum Dot Superlattices.
    Notot V; Walravens W; Berthe M; Peric N; Addad A; Wallart X; Delerue C; Hens Z; Grandidier B; Biadala L
    ACS Nano; 2022 Feb; 16(2):3081-3091. PubMed ID: 35156366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Monomer Size on Fusion and Coupling in Colloidal Quantum Dot Molecules.
    Levi A; Hou B; Alon O; Ossia Y; Verbitsky L; Remennik S; Rabani E; Banin U
    Nano Lett; 2023 Dec; 23(23):11307-11313. PubMed ID: 38047748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neck Barrier Engineering in Quantum Dot Dimer Molecules via Intraparticle Ripening.
    Cui J; Koley S; Panfil YE; Levi A; Ossia Y; Waiskopf N; Remennik S; Oded M; Banin U
    J Am Chem Soc; 2021 Dec; 143(47):19816-19823. PubMed ID: 34791875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biexciton Auger Recombination in CdSe/CdS Core/Shell Semiconductor Nanocrystals.
    Vaxenburg R; Rodina A; Lifshitz E; L Efros A
    Nano Lett; 2016 Apr; 16(4):2503-11. PubMed ID: 26950398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybridization and deconfinement in colloidal quantum dot molecules.
    Verbitsky L; Jasrasaria D; Banin U; Rabani E
    J Chem Phys; 2022 Oct; 157(13):134502. PubMed ID: 36209001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Dislocation Theory to Minimize Defects in Artificial Solids Built with Nanocrystal Building Blocks.
    Ondry JC; Alivisatos AP
    Acc Chem Res; 2021 Mar; 54(6):1419-1429. PubMed ID: 33576596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths.
    Cui J; Beyler AP; Coropceanu I; Cleary L; Avila TR; Chen Y; Cordero JM; Heathcote SL; Harris DK; Chen O; Cao J; Bawendi MG
    Nano Lett; 2016 Jan; 16(1):289-96. PubMed ID: 26636347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation of atomic structure and photoluminescence of the same quantum dot: pinpointing surface and internal defects that inhibit photoluminescence.
    Orfield NJ; McBride JR; Keene JD; Davis LM; Rosenthal SJ
    ACS Nano; 2015 Jan; 9(1):831-9. PubMed ID: 25526260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction.
    Li JJ; Wang YA; Guo W; Keay JC; Mishima TD; Johnson MB; Peng X
    J Am Chem Soc; 2003 Oct; 125(41):12567-75. PubMed ID: 14531702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CdSe@CdS Dot@Platelet Nanocrystals: Controlled Epitaxy, Monoexponential Decay of Two-Dimensional Exciton, and Nonblinking Photoluminescence of Single Nanocrystal.
    Wang Y; Pu C; Lei H; Qin H; Peng X
    J Am Chem Soc; 2019 Nov; 141(44):17617-17628. PubMed ID: 31610655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals.
    Vanmaekelbergh D; Liljeroth P
    Chem Soc Rev; 2005 Apr; 34(4):299-312. PubMed ID: 15778764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed Exciton Magnetic Polaron Formation in a Single Colloidal Mn
    Lorenz S; Erickson CS; Riesner M; Gamelin DR; Fainblat R; Bacher G
    Nano Lett; 2020 Mar; 20(3):1896-1906. PubMed ID: 31999124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Core/Shell Interface on Carrier Dynamics and Optical Gain Properties of Dual-Color Emitting CdSe/CdS Nanocrystals.
    Pinchetti V; Meinardi F; Camellini A; Sirigu G; Christodoulou S; Bae WK; De Donato F; Manna L; Zavelani-Rossi M; Moreels I; Klimov VI; Brovelli S
    ACS Nano; 2016 Jul; 10(7):6877-87. PubMed ID: 27276033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification technologies for colloidal nanocrystals.
    Shen Y; Gee MY; Greytak AB
    Chem Commun (Camb); 2017 Jan; 53(5):827-841. PubMed ID: 27942615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.