These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 31844115)
1. Global Corticospinal Excitability as Assessed in A Non-Exercised Upper Limb Muscle Compared Between Concentric and Eccentric Modes of Leg Cycling. Walsh JA; Stapley PJ; Shemmell JBH; Lepers R; McAndrew DJ Sci Rep; 2019 Dec; 9(1):19212. PubMed ID: 31844115 [TBL] [Abstract][Full Text] [Related]
2. Torque, power and muscle activation of eccentric and concentric isokinetic cycling. Green DJ; Thomas K; Ross EZ; Green SC; Pringle JSM; Howatson G J Electromyogr Kinesiol; 2018 Jun; 40():56-63. PubMed ID: 29631117 [TBL] [Abstract][Full Text] [Related]
4. Differences in corticospinal excitability to the biceps brachii between arm cycling and tonic contraction are not evident at the immediate onset of movement. Forman DA; Philpott DT; Button DC; Power KE Exp Brain Res; 2016 Aug; 234(8):2339-49. PubMed ID: 27038204 [TBL] [Abstract][Full Text] [Related]
5. Differential effects of aging and physical activity on corticospinal excitability of upper and lower limb muscles. Rozand V; Senefeld JW; Sundberg CW; Smith AE; Hunter SK J Neurophysiol; 2019 Jul; 122(1):241-250. PubMed ID: 31091158 [TBL] [Abstract][Full Text] [Related]
6. Corticospinal excitability is altered similarly following concentric and eccentric maximal contractions. Clos P; Garnier Y; Martin A; Lepers R Eur J Appl Physiol; 2020 Jun; 120(6):1457-1469. PubMed ID: 32347373 [TBL] [Abstract][Full Text] [Related]
7. Leg Muscle Activity and Perception of Effort before and after Four Short Sessions of Submaximal Eccentric Cycling. Clos P; Lepers R Int J Environ Res Public Health; 2020 Oct; 17(21):. PubMed ID: 33105553 [No Abstract] [Full Text] [Related]
9. Corticospinal excitability to the biceps and triceps brachii during forward and backward arm cycling is direction- and phase-dependent. Nippard AP; Lockyer EJ; Button DC; Power KE Appl Physiol Nutr Metab; 2020 Jan; 45(1):72-80. PubMed ID: 31167082 [TBL] [Abstract][Full Text] [Related]
10. Corticospinal and intracortical responses from both motor cortices following unilateral concentric versus eccentric contractions. van der Groen O; Latella C; Nosaka K; Edwards D; Teo WP; Taylor JL Eur J Neurosci; 2023 Feb; 57(4):619-632. PubMed ID: 36512398 [TBL] [Abstract][Full Text] [Related]
11. Relationship between motor corticospinal excitability and ventilatory response during intense exercise. Yunoki T; Matsuura R; Yamanaka R; Afroundeh R; Lian CS; Shirakawa K; Ohtsuka Y; Yano T Eur J Appl Physiol; 2016 Jun; 116(6):1117-26. PubMed ID: 27055665 [TBL] [Abstract][Full Text] [Related]
12. Intensity matters: effects of cadence and power output on corticospinal excitability during arm cycling are phase and muscle dependent. Lockyer EJ; Benson RJ; Hynes AP; Alcock LR; Spence AJ; Button DC; Power KE J Neurophysiol; 2018 Dec; 120(6):2908-2921. PubMed ID: 30354778 [TBL] [Abstract][Full Text] [Related]
13. Corticospinal excitability of the biceps brachii is shoulder position dependent. Collins BW; Cadigan EWJ; Stefanelli L; Button DC J Neurophysiol; 2017 Dec; 118(6):3242-3251. PubMed ID: 28855295 [TBL] [Abstract][Full Text] [Related]
14. Evidence for existence of trunk-limb neural interaction in the corticospinal pathway. Sasaki A; Milosevic M; Sekiguchi H; Nakazawa K Neurosci Lett; 2018 Mar; 668():31-36. PubMed ID: 29309857 [TBL] [Abstract][Full Text] [Related]
15. Corticospinal excitability of the biceps brachii is higher during arm cycling than an intensity-matched tonic contraction. Forman D; Raj A; Button DC; Power KE J Neurophysiol; 2014 Sep; 112(5):1142-51. PubMed ID: 24899677 [TBL] [Abstract][Full Text] [Related]
16. Cadence-dependent changes in corticospinal excitability of the biceps brachii during arm cycling. Forman DA; Philpott DT; Button DC; Power KE J Neurophysiol; 2015 Oct; 114(4):2285-94. PubMed ID: 26289462 [TBL] [Abstract][Full Text] [Related]
17. Factors contributing to lower metabolic demand of eccentric compared with concentric cycling. Peñailillo L; Blazevich AJ; Nosaka K J Appl Physiol (1985); 2017 Oct; 123(4):884-893. PubMed ID: 28663378 [TBL] [Abstract][Full Text] [Related]
18. Effect of concentric and eccentric muscle actions on muscle sympathetic nerve activity. Carrasco DI; Delp MD; Ray CA J Appl Physiol (1985); 1999 Feb; 86(2):558-63. PubMed ID: 9931191 [TBL] [Abstract][Full Text] [Related]
19. Changes in oxidative stress, inflammation and muscle damage markers following eccentric versus concentric cycling in older adults. González-Bartholin R; Mackay K; Valladares D; Zbinden-Foncea H; Nosaka K; Peñailillo L Eur J Appl Physiol; 2019 Oct; 119(10):2301-2312. PubMed ID: 31451954 [TBL] [Abstract][Full Text] [Related]
20. Effects of eccentric versus concentric contractions of the biceps brachii on intracortical inhibition and facilitation. Latella C; Goodwill AM; Muthalib M; Hendy AM; Major B; Nosaka K; Teo WP Scand J Med Sci Sports; 2019 Mar; 29(3):369-379. PubMed ID: 30403428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]