These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 31845127)

  • 1. What makes an accurate and reliable subject-specific finite element model? A case study of an elephant femur.
    Panagiotopoulou O; Wilshin SD; Rayfield EJ; Shefelbine SJ; Hutchinson JR
    J R Soc Interface; 2012 Feb; 9(67):351-61. PubMed ID: 21752810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cosimulation of the index finger extensor apparatus with finite element and musculoskeletal models.
    Jadelis CT; Ellis BJ; Kamper DG; Saul KR
    J Biomech; 2023 Aug; 157():111725. PubMed ID: 37459752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of excessive contact pressures under hand orthosis based on finite element analysis.
    Tan X; Ahmed-Kristensen S; Zhu Q; Han T; Zhu L; Chen W; Cao J; Nanayakkara T
    Prosthet Orthot Int; 2024 May; ():. PubMed ID: 38771762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thoughts and perspectives on biomechanical numerical models under impacts: Are women forgotten from research?
    Roth S
    Proc Inst Mech Eng H; 2023 Oct; 237(10):1122-1138. PubMed ID: 37702375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of wheel-rail interface parameters on contact stability in explicit finite element analysis.
    Ma Y; Markine VL; Mashal AA; Ren M
    Proc Inst Mech Eng F J Rail Rapid Transit; 2018 Jul; 232(6):1879-1894. PubMed ID: 30662170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of internal pressure and neuromuscular agents on
    Essmann CL; Elmi M; Rekatsinas C; Chrysochoidis N; Shaw M; Pawar V; Srinivasan MA; Vavourakis V
    Front Bioeng Biotechnol; 2024; 12():1335788. PubMed ID: 38558792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and simulation credibility assessments of whole-body finite element computational models for use in NASA extravehicular activity applications.
    Perkins RA; Gallo CA; Ivanoff AE; Yates KM; Schkurko CM; Somers JT; Newby NJ; Myers JG; Prabhu RK
    Comput Methods Biomech Biomed Engin; 2023 Dec; ():1-14. PubMed ID: 38130093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite Element Modeling of the Human Wrist.
    Nakamura T
    J Wrist Surg; 2023 Dec; 12(6):477. PubMed ID: 38213564
    [No Abstract]   [Full Text] [Related]  

  • 9. Finite Element Model of the Shoulder with Active Rotator Cuff Muscles: Application to Wheelchair Propulsion.
    Assila N; Begon M; Duprey S
    Ann Biomed Eng; 2024 May; 52(5):1240-1254. PubMed ID: 38376768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite Element Modeling of the Human Wrist: A Review.
    Mena A; Wollstein R; Baus J; Yang J
    J Wrist Surg; 2023 Dec; 12(6):478-487. PubMed ID: 38213568
    [No Abstract]   [Full Text] [Related]  

  • 11. Quantitative Investigation of Hand Grasp Functionality: Hand Joint Motion Correlation, Independence, and Grasping Behavior.
    Liu Y; Zeng B; Zhang T; Jiang L; Liu H; Ming D
    Appl Bionics Biomech; 2021; 2021():2787832. PubMed ID: 34899980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo soft tissue compressive properties of the human hand.
    Spartacus V; Shojaeizadeh M; Raffault V; Shoults J; Van Wieren K; Sparrey CJ
    PLoS One; 2021; 16(12):e0261008. PubMed ID: 34898632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medical Imaging Diagnosis of Anterior Cruciate Ligament Injury Based on Intelligent Finite-Element Algorithm.
    Wang M
    J Healthc Eng; 2021; 2021():6073757. PubMed ID: 34659689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subject-Specific Finite Element Modelling of the Human Hand Complex: Muscle-Driven Simulations and Experimental Validation.
    Wei Y; Zou Z; Wei G; Ren L; Qian Z
    Ann Biomed Eng; 2020 Apr; 48(4):1181-1195. PubMed ID: 31845127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions.
    Akrami M; Qian Z; Zou Z; Howard D; Nester CJ; Ren L
    Biomech Model Mechanobiol; 2018 Apr; 17(2):559-576. PubMed ID: 29139051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A finite element model of the lower limb during stance phase of gait cycle including the muscle forces.
    Diffo Kaze A; Maas S; Arnoux PJ; Wolf C; Pape D
    Biomed Eng Online; 2017 Dec; 16(1):138. PubMed ID: 29212516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint.
    Naghibi Beidokhti H; Janssen D; van de Groes S; Hazrati J; Van den Boogaard T; Verdonschot N
    J Biomech; 2017 Dec; 65():1-11. PubMed ID: 28917580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element models of the human shoulder complex: a review of their clinical implications and modelling techniques.
    Zheng M; Zou Z; Bartolo PJ; Peach C; Ren L
    Int J Numer Method Biomed Eng; 2017 Feb; 33(2):. PubMed ID: 26891250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-specific modelling of bone and bone-implant systems: the challenges.
    Pankaj P
    Int J Numer Method Biomed Eng; 2013 Feb; 29(2):233-49. PubMed ID: 23281281
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.