BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31845303)

  • 1. Transcriptome changes in reciprocal grafts involving watermelon and bottle gourd reveal molecular mechanisms involved in increase of the fruit size, rind toughness and soluble solids.
    Garcia-Lozano M; Dutta SK; Natarajan P; Tomason YR; Lopez C; Katam R; Levi A; Nimmakayala P; Reddy UK
    Plant Mol Biol; 2020 Jan; 102(1-2):213-223. PubMed ID: 31845303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide identification and comparative analysis of grafting-responsive mRNA in watermelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing.
    Liu N; Yang J; Fu X; Zhang L; Tang K; Guy KM; Hu Z; Guo S; Xu Y; Zhang M
    Mol Genet Genomics; 2016 Apr; 291(2):621-33. PubMed ID: 26500104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation of lycopene metabolism mediated by rootstock during the ripening of grafted watermelons.
    Kong Q; Yuan J; Gao L; Liu P; Cao L; Huang Y; Zhao L; Lv H; Bie Z
    Food Chem; 2017 Jan; 214():406-411. PubMed ID: 27507492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological observation, RNA-Seq quantification, and expression profiling: novel insight into grafting-responsive carotenoid biosynthesis in watermelon grafted onto pumpkin rootstock.
    Liu G; Yang X; Xu J; Zhang M; Hou Q; Zhu L; Huang Y; Xiong A
    Acta Biochim Biophys Sin (Shanghai); 2017 Mar; 49(3):216-227. PubMed ID: 28040679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles.
    Guo S; Liu J; Zheng Y; Huang M; Zhang H; Gong G; He H; Ren Y; Zhong S; Fei Z; Xu Y
    BMC Genomics; 2011 Sep; 12():454. PubMed ID: 21936920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Appropriate Reference Genes for Normalization of miRNA Expression in Grafted Watermelon Plants under Different Nutrient Stresses.
    Wu W; Deng Q; Shi P; Yang J; Hu Z; Zhang M
    PLoS One; 2016; 11(10):e0164725. PubMed ID: 27749935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening.
    Zhu Q; Gao P; Liu S; Zhu Z; Amanullah S; Davis AR; Luan F
    BMC Genomics; 2017 Jan; 18(1):3. PubMed ID: 28049426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression in developing watermelon fruit.
    Wechter WP; Levi A; Harris KR; Davis AR; Fei Z; Katzir N; Giovannoni JJ; Salman-Minkov A; Hernandez A; Thimmapuram J; Tadmor Y; Portnoy V; Trebitsh T
    BMC Genomics; 2008 Jun; 9():275. PubMed ID: 18534026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bottle gourd rootstock-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress.
    Yang Y; Yu L; Wang L; Guo S
    J Plant Physiol; 2015 Aug; 186-187():50-8. PubMed ID: 26368284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.
    Gao L; Zhao S; Lu X; He N; Zhu H; Dou J; Liu W
    PLoS One; 2018; 13(1):e0190096. PubMed ID: 29324867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant Grafting Shapes Complexity and Co-occurrence of Rhizobacterial Assemblages.
    Ruan Y; Wang T; Guo S; Ling N; Shen Q
    Microb Ecol; 2020 Oct; 80(3):643-655. PubMed ID: 32514604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development.
    Guo S; Sun H; Zhang H; Liu J; Ren Y; Gong G; Jiao C; Zheng Y; Yang W; Fei Z; Xu Y
    PLoS One; 2015; 10(6):e0130267. PubMed ID: 26079257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic Analysis of Short-Term Salt Stress Response in Watermelon Seedlings.
    Song Q; Joshi M; Joshi V
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32839408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome Profiling of Watermelon Root in Response to Short-Term Osmotic Stress.
    Yang Y; Mo Y; Yang X; Zhang H; Wang Y; Li H; Wei C; Zhang X
    PLoS One; 2016; 11(11):e0166314. PubMed ID: 27861528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating Cucurbit Rootstocks to Prevent Disease Caused by
    Toporek SM; Keinath AP
    Plant Dis; 2020 Nov; 104(11):3019-3025. PubMed ID: 32822263
    [No Abstract]   [Full Text] [Related]  

  • 16. Transcriptome regulation of carotenoids in five flesh-colored watermelons (Citrullus lanatus).
    Yuan P; Umer MJ; He N; Zhao S; Lu X; Zhu H; Gong C; Diao W; Gebremeskel H; Kuang H; Liu W
    BMC Plant Biol; 2021 Apr; 21(1):203. PubMed ID: 33910512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic study participating the enhancement of growth and salt tolerance of bottle gourd rootstock-grafted watermelon seedlings.
    Yang Y; Wang L; Tian J; Li J; Sun J; He L; Guo S; Tezuka T
    Plant Physiol Biochem; 2012 Sep; 58():54-65. PubMed ID: 22771436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of weathered p,p'-DDTs in grafted watermelon.
    Isleyen M; Sevim P; White JC
    J Agric Food Chem; 2012 Feb; 60(4):1113-21. PubMed ID: 22224752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings.
    Xu J; Zhang M; Liu G; Yang X; Hou X
    Plant Physiol Biochem; 2016 Dec; 109():561-570. PubMed ID: 27837724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification and comparative analysis of conserved and novel microRNAs in grafted watermelon by high-throughput sequencing.
    Liu N; Yang J; Guo S; Xu Y; Zhang M
    PLoS One; 2013; 8(2):e57359. PubMed ID: 23468976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.