BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31845533)

  • 1. Cu
    Liu P; Brassard CJ; Lee JP; Zhu L
    Chem Asian J; 2020 Feb; 15(3):380-390. PubMed ID: 31845533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Copper(I)-Catalyzed 5-Iodo-1,2,3-triazole Formation from Azide and Terminal Alkyne.
    Barsoum DN; Okashah N; Zhang X; Zhu L
    J Org Chem; 2015 Oct; 80(19):9542-51. PubMed ID: 26352108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cu(II)-Catalyzed Oxidative Formation of 5,5'-Bistriazoles.
    Brassard CJ; Zhang X; Brewer CR; Liu P; Clark RJ; Zhu L
    J Org Chem; 2016 Dec; 81(24):12091-12105. PubMed ID: 27737544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition.
    Zhu L; Brassard CJ; Zhang X; Guha PM; Clark RJ
    Chem Rec; 2016 Jun; 16(3):1501-17. PubMed ID: 27216993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dicopper Cu(I)Cu(I) and Cu(I)Cu(II) Complexes in Copper-Catalyzed Azide-Alkyne Cycloaddition.
    Ziegler MS; Lakshmi KV; Tilley TD
    J Am Chem Soc; 2017 Apr; 139(15):5378-5386. PubMed ID: 28394586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne "click reaction".
    Jin L; Tolentino DR; Melaimi M; Bertrand G
    Sci Adv; 2015 Jun; 1(5):e1500304. PubMed ID: 26601202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Basis of the Cu(OAc)
    Bunschoten RP; Peschke F; Taladriz-Sender A; Alexander E; Andrews MJ; Kennedy AR; Fazakerley NJ; Lloyd Jones GC; Watson AJB; Burley GA
    J Am Chem Soc; 2024 May; 146(19):13558-13570. PubMed ID: 38712910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper(II)-Bis-Cyclen Intercalated Graphene Oxide as an Efficient Two-Dimensional Nanocomposite Material for Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction.
    Samuel AG; Subramanian S; Vijendran V; Bhagavathsingh J
    Front Chem; 2021; 9():754734. PubMed ID: 35071181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) by Functionalized NHC-Based Polynuclear Catalysts: Scope and Mechanistic Insights.
    González-Lainez M; Gallegos M; Munarriz J; Azpiroz R; Passarelli V; Jiménez MV; Pérez-Torrente JJ
    Organometallics; 2022 Aug; 41(15):2154-2169. PubMed ID: 35971402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of copper-catalyzed azide-alkyne cycloaddition reaction: a quantum mechanical investigation.
    Ozen C; Tüzün NŞ
    J Mol Graph Model; 2012 Apr; 34():101-7. PubMed ID: 22306418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visible-Light-Mediated Click Chemistry for Highly Regioselective Azide-Alkyne Cycloaddition by a Photoredox Electron-Transfer Strategy.
    Wu ZG; Liao XJ; Yuan L; Wang Y; Zheng YX; Zuo JL; Pan Y
    Chemistry; 2020 May; 26(25):5694-5700. PubMed ID: 31953964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Click" Chemistry: Application of Copper Metal in Cu-Catalyzed Azomethine Imine-Alkyne Cycloadditions.
    Pušavec Kirar E; Grošelj U; Mirri G; Požgan F; Strle G; Štefane B; Jovanovski V; Svete J
    J Org Chem; 2016 Jul; 81(14):5988-97. PubMed ID: 27305104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermediates Stabilized by Tris(triazolylmethyl)amines in the CuAAC Reaction.
    Chen H; Cai C; Li S; Ma Y; Luozhong S; Zhu Z
    Chemistry; 2017 Apr; 23(19):4730-4735. PubMed ID: 28191741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper and silver complexes of tris(triazole)amine and tris(benzimidazole)amine ligands: evidence that catalysis of an azide-alkyne cycloaddition ("click") reaction by a silver tris(triazole)amine complex arises from copper impurities.
    Connell TU; Schieber C; Silvestri IP; White JM; Williams SJ; Donnelly PS
    Inorg Chem; 2014 Jul; 53(13):6503-11. PubMed ID: 24949519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tripodal Amine Ligands for Accelerating Cu-Catalyzed Azide-Alkyne Cycloaddition: Efficiency and Stability against Oxidation and Dissociation.
    Zhu Z; Chen H; Li S; Yang X; Bittner E; Cai C
    Catal Sci Technol; 2017; 7(12):2474-2485. PubMed ID: 29129990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions.
    Zhang X; Liu P; Zhu L
    Molecules; 2016 Dec; 21(12):. PubMed ID: 27941684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the whole range of CuAAC mechanisms by DFT calculations--on the intermediacy of copper acetylides.
    Cantillo D; Ávalos M; Babiano R; Cintas P; Jiménez JL; Palacios JC
    Org Biomol Chem; 2011 Apr; 9(8):2952-8. PubMed ID: 21380437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of polyhydroxyalkanoates: Evaluation of the effectiveness of novel copper(II) catalysts in click chemistry.
    Nkrumah-Agyeefi S; Pella BJ; Singh N; Mukherjee A; Scholz C
    Int J Biol Macromol; 2019 May; 128():376-384. PubMed ID: 30682482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-Heterocyclic Imine-Supported Bimetallic Cu(II) Catalyst for Azide-Alkyne Cycloaddition: Solvent-free, Reductant-free, ppm-level Catalysis to Access 1,4-Disubstituted Triazoles.
    Revathi S; Ghatak T
    Chem Asian J; 2023 May; 18(10):e202300156. PubMed ID: 36951804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkyne-azide click reaction catalyzed by metallic copper under ultrasound.
    Cintas P; Barge A; Tagliapietra S; Boffa L; Cravotto G
    Nat Protoc; 2010 Mar; 5(3):607-16. PubMed ID: 20203675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.