These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 31845678)
1. Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism. Yu ZE; Lyu Y; Wang Y; Xu S; Cheng H; Mu X; Chu J; Chen R; Liu Y; Guo B Chem Commun (Camb); 2020 Jan; 56(5):778-781. PubMed ID: 31845678 [TBL] [Abstract][Full Text] [Related]
2. High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for Sodium-Ion Batteries. Wang Y; Feng Z; Zhu W; Gariépy V; Gagnon C; Provencher M; Laul D; Veillette R; Trudeau ML; Guerfi A; Zaghib K Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30050008 [TBL] [Abstract][Full Text] [Related]
3. From Natural Fibers to High-Performance Anodes: Sisal Hemp Derived Hard Carbon for Na-/K-Ion Batteries and Mechanism Exploration. Ou H; Pei B; Zhou Y; Yang M; Pan J; Liang S; Cao X Small Methods; 2024 Aug; ():e2400839. PubMed ID: 39169737 [TBL] [Abstract][Full Text] [Related]
4. Exploring Sodium-Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball-Milling Method. Lu H; Ai F; Jia Y; Tang C; Zhang X; Huang Y; Yang H; Cao Y Small; 2018 Sep; 14(39):e1802694. PubMed ID: 30175558 [TBL] [Abstract][Full Text] [Related]
5. Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries. Zheng P; Liu T; Guo S Sci Rep; 2016 Oct; 6():35620. PubMed ID: 27752146 [TBL] [Abstract][Full Text] [Related]
6. Achieving Slope-Reigned Na-Ion Storage in Carbon Nanofibers by Constructing Defect-Rich Texture by a Cu-Activation Strategy. Guo X; Xue Y; Zhou H; Weng Y; Zhou J ACS Appl Mater Interfaces; 2020 Jan; 12(2):2407-2416. PubMed ID: 31851485 [TBL] [Abstract][Full Text] [Related]
7. Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries. Shen F; Zhu H; Luo W; Wan J; Zhou L; Dai J; Zhao B; Han X; Fu K; Hu L ACS Appl Mater Interfaces; 2015 Oct; 7(41):23291-6. PubMed ID: 26437023 [TBL] [Abstract][Full Text] [Related]
8. Preparation of green high-performance biomass-derived hard carbon materials from bamboo powder waste. Yin T; Zhang Z; Xu L; Li C; Han D ChemistryOpen; 2024 May; 13(5):e202300178. PubMed ID: 38214441 [TBL] [Abstract][Full Text] [Related]
9. Hydrothermally Assisted Conversion of Switchgrass into Hard Carbon as Anode Materials for Sodium-Ion Batteries. Li Y; Xia D; Tao L; Xu Z; Yu D; Jin Q; Lin F; Huang H ACS Appl Mater Interfaces; 2024 Jun; 16(22):28461-28472. PubMed ID: 38780280 [TBL] [Abstract][Full Text] [Related]
10. Honeycomb-like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries. Zhang Y; Li X; Dong P; Wu G; Xiao J; Zeng X; Zhang Y; Sun X ACS Appl Mater Interfaces; 2018 Dec; 10(49):42796-42803. PubMed ID: 30461257 [TBL] [Abstract][Full Text] [Related]
11. Biomass-Derived Hard Carbon with Interlayer Spacing Optimization toward Ultrastable Na-Ion Storage. Hou Z; Lei D; Jiang M; Gao Y; Zhang X; Zhang Y; Wang JG ACS Appl Mater Interfaces; 2023 Jan; 15(1):1367-1375. PubMed ID: 36576060 [TBL] [Abstract][Full Text] [Related]
12. P-doped spherical hard carbon with high initial coulombic efficiency and enhanced capacity for sodium ion batteries. Liu ZG; Zhao J; Yao H; He XX; Zhang H; Qiao Y; Wu XQ; Li L; Chou SL Chem Sci; 2024 Jun; 15(22):8478-8487. PubMed ID: 38846387 [TBL] [Abstract][Full Text] [Related]
13. Pre-Oxidation Strategy Transforming Waste Foam to Hard Carbon Anodes for Boosting Sodium Storage Performance. Chen Y; Sun H; He XX; Chen Q; Zhao JH; Wei Y; Wu X; Zhang Z; Jiang Y; Chou SL Small; 2024 Mar; 20(12):e2307132. PubMed ID: 37946700 [TBL] [Abstract][Full Text] [Related]
14. High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries. Zhang J; Yin YX; Guo YG ACS Appl Mater Interfaces; 2015 Dec; 7(50):27838-44. PubMed ID: 26618232 [TBL] [Abstract][Full Text] [Related]
15. Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery. Zhang H; Ming H; Zhang W; Cao G; Yang Y ACS Appl Mater Interfaces; 2017 Jul; 9(28):23766-23774. PubMed ID: 28650143 [TBL] [Abstract][Full Text] [Related]
16. One-Step Construction of Closed Pores Enabling High Plateau Capacity Hard Carbon Anodes for Sodium-Ion Batteries: Closed-Pore Formation and Energy Storage Mechanisms. Qiu C; Li A; Qiu D; Wu Y; Jiang Z; Zhang J; Xiao J; Yuan R; Jiang Z; Liu X; Chen X; Song H ACS Nano; 2024 May; 18(18):11941-11954. PubMed ID: 38652811 [TBL] [Abstract][Full Text] [Related]
17. Jute-Fiber Precursor-Derived Low-Cost Sustainable Hard Carbon with Varying Micro/Mesoporosity and Distinct Storage Mechanisms for Sodium-Ion and Potassium-Ion Batteries. ; Verma P; Puravankara S Langmuir; 2022 Dec; 38(50):15703-15713. PubMed ID: 36490218 [TBL] [Abstract][Full Text] [Related]
18. Deconstruction Engineering of Lignocellulose Toward High-Plateau-Capacity Hard Carbon Anodes for Sodium-Ion Batteries. Huang Z; Huang J; Zhong L; Zhang W; Qiu X Small; 2024 Dec; 20(50):e2405632. PubMed ID: 39328026 [TBL] [Abstract][Full Text] [Related]
19. Pore structure regulation of hard carbon: Towards fast and high-capacity sodium-ion storage. Yang L; Hu M; Zhang H; Yang W; Lv R J Colloid Interface Sci; 2020 Apr; 566():257-264. PubMed ID: 32007737 [TBL] [Abstract][Full Text] [Related]
20. Biomass-Derived Hard Carbon for Sodium-Ion Batteries: Basic Research and Industrial Application. Zhong B; Liu C; Xiong D; Cai J; Li J; Li D; Cao Z; Song B; Deng W; Peng H; Hou H; Zou G; Ji X ACS Nano; 2024 Jul; 18(26):16468-16488. PubMed ID: 38900494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]