These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31845796)

  • 1. Materials for Interfaces in Organic Solar Cells and Photodetectors.
    Li T; Chen Z; Wang Y; Tu J; Deng X; Li Q; Li Z
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3301-3326. PubMed ID: 31845796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Status and Prospects of Aggregation-Induced Emission Materials in Organic Optoelectronic Devices.
    Ma D
    Top Curr Chem (Cham); 2021 Mar; 379(3):16. PubMed ID: 33725239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slip-Stacked J-Aggregate Materials for Organic Solar Cells and Photodetectors.
    Kim JH; Schembri T; Bialas D; Stolte M; Würthner F
    Adv Mater; 2022 Jun; 34(22):e2104678. PubMed ID: 34668248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial Charge Transfer States in Condensed Phase Systems.
    Vandewal K
    Annu Rev Phys Chem; 2016 May; 67():113-33. PubMed ID: 26980308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier Blocking Layer Materials and Application in Organic Photodetectors.
    Li Y; Chen H; Zhang J
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34073349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic and perovskite solar cells: Working principles, materials and interfaces.
    Marinova N; Valero S; Delgado JL
    J Colloid Interface Sci; 2017 Feb; 488():373-389. PubMed ID: 27871725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer Solar Cells-Interfacial Processes Related to Performance Issues.
    Gusain A; Faria RM; Miranda PB
    Front Chem; 2019; 7():61. PubMed ID: 30809519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of organic/organic interfaces in organic light-emitting devices due to polaron-exciton interactions.
    Wang Q; Aziz H
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8733-9. PubMed ID: 23937296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of gap states in the energy level alignment at the organic-organic heterojunction interfaces.
    Zhong S; Zhong JQ; Mao HY; Zhang JL; Lin JD; Chen W
    Phys Chem Chem Phys; 2012 Nov; 14(41):14127-41. PubMed ID: 22903473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separating Charges at Organic Interfaces: Effects of Disorder, Hot States, and Electric Field.
    Nayak PK; Narasimhan KL; Cahen D
    J Phys Chem Lett; 2013 May; 4(10):1707-17. PubMed ID: 26282982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical interfaces in organic solar cells and their influence on the open-circuit voltage.
    Potscavage WJ; Sharma A; Kippelen B
    Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of interface properties in CuPc based hybrid inorganic-organic solar cells.
    Thalluri GK; Spoltore D; Piersimoni F; Clifford JN; Palomares E; Manca JV
    Dalton Trans; 2012 Oct; 41(37):11419-23. PubMed ID: 22890562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Interfacial Layers in Perovskite Solar Cells.
    Cho AN; Park NG
    ChemSusChem; 2017 Oct; 10(19):3687-3704. PubMed ID: 28736950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amine-Based Interfacial Engineering in Solution-Processed Organic and Perovskite Solar Cells.
    Rasool S; Khan N; Jahankhan M; Kim DH; Ho TT; Do LT; Song CE; Lee HK; Lee SK; Lee JC; So WW; Moon SJ; Shin WS
    ACS Appl Mater Interfaces; 2019 May; 11(18):16785-16794. PubMed ID: 30999747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging Schemes for Advancing 2D Material Photoconductive-Type Photodetectors.
    Liang H; Ma Y; Yi H; Yao J
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic Solar Cell Materials toward Commercialization.
    Xue R; Zhang J; Li Y; Li Y
    Small; 2018 Oct; 14(41):e1801793. PubMed ID: 30106505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic Optoelectronic Materials: Mechanisms and Applications.
    Ostroverkhova O
    Chem Rev; 2016 Nov; 116(22):13279-13412. PubMed ID: 27723323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thin-film growth and patterning techniques for small molecular organic compounds used in optoelectronic device applications.
    Biswas S; Shalev O; Shtein M
    Annu Rev Chem Biomol Eng; 2013; 4():289-317. PubMed ID: 23540286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in metal-organic complexes for optoelectronic applications.
    Xu H; Chen R; Sun Q; Lai W; Su Q; Huang W; Liu X
    Chem Soc Rev; 2014 May; 43(10):3259-302. PubMed ID: 24531130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interface dipoles for tuning energy level alignment in organic thin film devices.
    Nüesch FA
    Chimia (Aarau); 2013; 67(11):796-803. PubMed ID: 24388232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.