These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 31845845)
1. Deep Learning for Predicting Enhancing Lesions in Multiple Sclerosis from Noncontrast MRI. Narayana PA; Coronado I; Sujit SJ; Wolinsky JS; Lublin FD; Gabr RE Radiology; 2020 Feb; 294(2):398-404. PubMed ID: 31845845 [TBL] [Abstract][Full Text] [Related]
2. Joint MRI T1 Unenhancing and Contrast-enhancing Multiple Sclerosis Lesion Segmentation with Deep Learning in OPERA Trials. Krishnan AP; Song Z; Clayton D; Gaetano L; Jia X; de Crespigny A; Bengtsson T; Carano RAD Radiology; 2022 Mar; 302(3):662-673. PubMed ID: 34904871 [TBL] [Abstract][Full Text] [Related]
3. Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks. Sujit SJ; Coronado I; Kamali A; Narayana PA; Gabr RE J Magn Reson Imaging; 2019 Oct; 50(4):1260-1267. PubMed ID: 30811739 [TBL] [Abstract][Full Text] [Related]
4. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis. Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065 [TBL] [Abstract][Full Text] [Related]
5. Deep learning for discrimination of active and inactive lesions in multiple sclerosis using non-contrast FLAIR MRI: A multicenter study. Amini A; Shayganfar A; Amini Z; Ostovar L; HajiAhmadi S; Chitsaz N; Rabbani M; Kafieh R Mult Scler Relat Disord; 2024 Jul; 87():105642. PubMed ID: 38703520 [TBL] [Abstract][Full Text] [Related]
6. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning. Narayana PA; Coronado I; Sujit SJ; Sun X; Wolinsky JS; Gabr RE Magn Reson Imaging; 2020 Jan; 65():8-14. PubMed ID: 31670238 [TBL] [Abstract][Full Text] [Related]
7. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176 [TBL] [Abstract][Full Text] [Related]
8. Accuracy of Unenhanced MRI in the Detection of New Brain Lesions in Multiple Sclerosis. Eichinger P; Schön S; Pongratz V; Wiestler H; Zhang H; Bussas M; Hoshi MM; Kirschke J; Berthele A; Zimmer C; Hemmer B; Mühlau M; Wiestler B Radiology; 2019 May; 291(2):429-435. PubMed ID: 30860448 [TBL] [Abstract][Full Text] [Related]
9. Comparison between gadolinium-enhanced 2D T1-weighted gradient-echo and spin-echo sequences in the detection of active multiple sclerosis lesions on 3.0T MRI. Aymerich FX; Auger C; Alcaide-Leon P; Pareto D; Huerga E; Corral JF; Mitjana R; Sastre-Garriga J; Montalban X; Rovira A Eur Radiol; 2017 Apr; 27(4):1361-1368. PubMed ID: 27456965 [TBL] [Abstract][Full Text] [Related]
10. Can Deep Learning Replace Gadolinium in Neuro-Oncology?: A Reader Study. Ammari S; Bône A; Balleyguier C; Moulton E; Chouzenoux É; Volk A; Menu Y; Bidault F; Nicolas F; Robert P; Rohé MM; Lassau N Invest Radiol; 2022 Feb; 57(2):99-107. PubMed ID: 34324463 [TBL] [Abstract][Full Text] [Related]
11. Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI. Grøvik E; Yi D; Iv M; Tong E; Rubin D; Zaharchuk G J Magn Reson Imaging; 2020 Jan; 51(1):175-182. PubMed ID: 31050074 [TBL] [Abstract][Full Text] [Related]
12. Within-lesion differences in quantitative MRI parameters predict contrast enhancement in multiple sclerosis. Jurcoane A; Wagner M; Schmidt C; Mayer C; Gracien RM; Hirschmann M; Deichmann R; Volz S; Ziemann U; Hattingen E J Magn Reson Imaging; 2013 Dec; 38(6):1454-61. PubMed ID: 23554005 [TBL] [Abstract][Full Text] [Related]
13. Radiomic versus Convolutional Neural Networks Analysis for Classification of Contrast-enhancing Lesions at Multiparametric Breast MRI. Truhn D; Schrading S; Haarburger C; Schneider H; Merhof D; Kuhl C Radiology; 2019 Feb; 290(2):290-297. PubMed ID: 30422086 [TBL] [Abstract][Full Text] [Related]
14. Automatic segmentation of gadolinium-enhancing lesions in multiple sclerosis using deep learning from clinical MRI. Gaj S; Ontaneda D; Nakamura K PLoS One; 2021; 16(9):e0255939. PubMed ID: 34469432 [TBL] [Abstract][Full Text] [Related]
15. Deep Learning to Simulate Contrast-enhanced Breast MRI of Invasive Breast Cancer. Chung M; Calabrese E; Mongan J; Ray KM; Hayward JH; Kelil T; Sieberg R; Hylton N; Joe BN; Lee AY Radiology; 2023 Mar; 306(3):e213199. PubMed ID: 36378030 [TBL] [Abstract][Full Text] [Related]
16. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. Hamm CA; Wang CJ; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Duncan JS; Weinreb JC; Chapiro J; Letzen B Eur Radiol; 2019 Jul; 29(7):3338-3347. PubMed ID: 31016442 [TBL] [Abstract][Full Text] [Related]
17. Deep-Learning Detection of Cancer Metastases to the Brain on MRI. Zhang M; Young GS; Chen H; Li J; Qin L; McFaline-Figueroa JR; Reardon DA; Cao X; Wu X; Xu X J Magn Reson Imaging; 2020 Oct; 52(4):1227-1236. PubMed ID: 32167652 [TBL] [Abstract][Full Text] [Related]