These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31845845)

  • 21. Thin-slice Two-dimensional T2-weighted Imaging with Deep Learning-based Reconstruction: Improved Lesion Detection in the Brain of Patients with Multiple Sclerosis.
    Iwamura M; Ide S; Sato K; Kakuta A; Tatsuo S; Nozaki A; Wakayama T; Ueno T; Haga R; Kakizaki M; Yokoyama Y; Yamauchi R; Tsushima F; Shibutani K; Tomiyama M; Kakeda S
    Magn Reson Med Sci; 2024 Apr; 23(2):184-192. PubMed ID: 36927877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation.
    Eitel F; Soehler E; Bellmann-Strobl J; Brandt AU; Ruprecht K; Giess RM; Kuchling J; Asseyer S; Weygandt M; Haynes JD; Scheel M; Paul F; Ritter K
    Neuroimage Clin; 2019; 24():102003. PubMed ID: 31634822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RimNet: A deep 3D multimodal MRI architecture for paramagnetic rim lesion assessment in multiple sclerosis.
    Barquero G; La Rosa F; Kebiri H; Lu PJ; Rahmanzadeh R; Weigel M; Fartaria MJ; Kober T; Théaudin M; Du Pasquier R; Sati P; Reich DS; Absinta M; Granziera C; Maggi P; Bach Cuadra M
    Neuroimage Clin; 2020; 28():102412. PubMed ID: 32961401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI.
    Song Y; Zhang YD; Yan X; Liu H; Zhou M; Hu B; Yang G
    J Magn Reson Imaging; 2018 Dec; 48(6):1570-1577. PubMed ID: 29659067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Psychophysical Evaluation of Visual vs. Computer-Aided Detection of Brain Lesions on Magnetic Resonance Images.
    Solomon C; Shmueli O; Shrot S; Blumenfeld-Katzir T; Radunsky D; Omer N; Stern N; Reichman DB; Hoffmann C; Salti M; Greenspan H; Ben-Eliezer N
    J Magn Reson Imaging; 2023 Aug; 58(2):642-649. PubMed ID: 36495014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diagnostic accuracy of semiautomatic lesion detection plus quantitative susceptibility mapping in the identification of new and enhancing multiple sclerosis lesions.
    Zhang S; Nguyen TD; Zhao Y; Gauthier SA; Wang Y; Gupta A
    Neuroimage Clin; 2018; 18():143-148. PubMed ID: 29387531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. QSMRim-Net: Imbalance-aware learning for identification of chronic active multiple sclerosis lesions on quantitative susceptibility maps.
    Zhang H; Nguyen TD; Zhang J; Marcille M; Spincemaille P; Wang Y; Gauthier SA; Sweeney EM
    Neuroimage Clin; 2022; 34():102979. PubMed ID: 35247730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thin-Slice Pituitary MRI with Deep Learning-based Reconstruction: Diagnostic Performance in a Postoperative Setting.
    Kim M; Kim HS; Kim HJ; Park JE; Park SY; Kim YH; Kim SJ; Lee J; Lebel MR
    Radiology; 2021 Jan; 298(1):114-122. PubMed ID: 33141001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study.
    Kleesiek J; Morshuis JN; Isensee F; Deike-Hofmann K; Paech D; Kickingereder P; Köthe U; Rother C; Forsting M; Wick W; Bendszus M; Schlemmer HP; Radbruch A
    Invest Radiol; 2019 Oct; 54(10):653-660. PubMed ID: 31261293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An approach to comparing accuracies of two FLAIR MR sequences in the detection of multiple sclerosis lesions in the brain in the absence of gold standard.
    Bilello M; Suri N; Krejza J; Woo JH; Bagley LJ; Mamourian AC; Vossough A; Chen JY; Millian BR; Mulderink T; Markowitz CE; Melhem ER
    Acad Radiol; 2010 Jun; 17(6):686-95. PubMed ID: 20457413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitivity of delayed gadolinium-enhanced MRI in multiple sclerosis.
    Filippi M; Yousry T; Rocca MA; Fesl G; Voltz R; Comi G
    Acta Neurol Scand; 1997 Jun; 95(6):331-4. PubMed ID: 9228265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of perfusion and permeability in multiple sclerosis: dynamic contrast-enhanced MRI in 3D at 3T.
    Ingrisch M; Sourbron S; Morhard D; Ertl-Wagner B; Kümpfel T; Hohlfeld R; Reiser M; Glaser C
    Invest Radiol; 2012 Apr; 47(4):252-8. PubMed ID: 22373532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global and Regional Deep Learning Models for Multiple Sclerosis Stratification From MRI.
    Coll L; Pareto D; Carbonell-Mirabent P; Cobo-Calvo Á; Arrambide G; Vidal-Jordana Á; Comabella M; Castilló J; Rodrı Guez-Acevedo B; Zabalza A; Galán I; Midaglia L; Nos C; Auger C; Alberich M; Río J; Sastre-Garriga J; Oliver A; Montalban X; Rovira À; Tintoré M; Lladó X; Tur C
    J Magn Reson Imaging; 2024 Jul; 60(1):258-267. PubMed ID: 37803817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting conversion from clinically isolated syndrome to multiple sclerosis-An imaging-based machine learning approach.
    Zhang H; Alberts E; Pongratz V; Mühlau M; Zimmer C; Wiestler B; Eichinger P
    Neuroimage Clin; 2019; 21():101593. PubMed ID: 30502078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach.
    Valverde S; Cabezas M; Roura E; González-Villà S; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Oliver A; Lladó X
    Neuroimage; 2017 Jul; 155():159-168. PubMed ID: 28435096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Added value of breathhold diffusion-weighted MRI in detection of small hepatocellular carcinoma lesions compared with dynamic contrast-enhanced MRI alone using receiver operating characteristic curve analysis.
    Xu PJ; Yan FH; Wang JH; Lin J; Ji Y
    J Magn Reson Imaging; 2009 Feb; 29(2):341-9. PubMed ID: 19161186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radiomics of Brain MRI: Utility in Prediction of Metastatic Tumor Type.
    Kniep HC; Madesta F; Schneider T; Hanning U; Schönfeld MH; Schön G; Fiehler J; Gauer T; Werner R; Gellissen S
    Radiology; 2019 Feb; 290(2):479-487. PubMed ID: 30526358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative MRI for Analysis of Active Multiple Sclerosis Lesions without Gadolinium-Based Contrast Agent.
    Blystad I; Håkansson I; Tisell A; Ernerudh J; Smedby Ö; Lundberg P; Larsson EM
    AJNR Am J Neuroradiol; 2016 Jan; 37(1):94-100. PubMed ID: 26471751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Use of Noncontrast Quantitative MRI to Detect Gadolinium-Enhancing Multiple Sclerosis Brain Lesions: A Systematic Review and Meta-Analysis.
    Gupta A; Al-Dasuqi K; Xia F; Askin G; Zhao Y; Delgado D; Wang Y
    AJNR Am J Neuroradiol; 2017 Jul; 38(7):1317-1322. PubMed ID: 28522663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prior to Initiation of Chemotherapy, Can We Predict Breast Tumor Response? Deep Learning Convolutional Neural Networks Approach Using a Breast MRI Tumor Dataset.
    Ha R; Chin C; Karcich J; Liu MZ; Chang P; Mutasa S; Pascual Van Sant E; Wynn RT; Connolly E; Jambawalikar S
    J Digit Imaging; 2019 Oct; 32(5):693-701. PubMed ID: 30361936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.