These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 31845845)
41. Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain MRI. Elliott C; Arnold DL; Collins DL; Arbel T IEEE Trans Med Imaging; 2013 Aug; 32(8):1490-503. PubMed ID: 23613032 [TBL] [Abstract][Full Text] [Related]
42. Performance of deep learning for differentiating pancreatic diseases on contrast-enhanced magnetic resonance imaging: A preliminary study. Gao X; Wang X Diagn Interv Imaging; 2020 Feb; 101(2):91-100. PubMed ID: 31375430 [TBL] [Abstract][Full Text] [Related]
43. Multiple sclerosis cortical lesion detection with deep learning at ultra-high-field MRI. La Rosa F; Beck ES; Maranzano J; Todea RA; van Gelderen P; de Zwart JA; Luciano NJ; Duyn JH; Thiran JP; Granziera C; Reich DS; Sati P; Bach Cuadra M NMR Biomed; 2022 Aug; 35(8):e4730. PubMed ID: 35297114 [TBL] [Abstract][Full Text] [Related]
44. A Transfer Learning Approach for Malignant Prostate Lesion Detection on Multiparametric MRI. Chen Q; Hu S; Long P; Lu F; Shi Y; Li Y Technol Cancer Res Treat; 2019 Jan; 18():1533033819858363. PubMed ID: 31221034 [TBL] [Abstract][Full Text] [Related]
46. Synthesizing Contrast-Enhanced MR Images from Noncontrast MR Images Using Deep Learning. Murugesan G; Yu FF; Achilleos M; DeBevits J; Nalawade S; Ganesh C; Wagner B; Madhuranthakam AJ; Maldjian JA AJNR Am J Neuroradiol; 2024 Mar; 45(3):312-319. PubMed ID: 38453408 [TBL] [Abstract][Full Text] [Related]
47. Adaptive voxel, texture and temporal conditional random fields for detection of Gad-enhancing multiple sclerosis lesions in brain MRI. Karimaghaloo Z; Rivaz H; Arnold DL; Collins DL; Arbel T Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):543-50. PubMed ID: 24505804 [TBL] [Abstract][Full Text] [Related]
48. Single-timepoint low-dimensional characterization and classification of acute versus chronic multiple sclerosis lesions using machine learning. Caba B; Cafaro A; Lombard A; Arnold DL; Elliott C; Liu D; Jiang X; Gafson A; Fisher E; Belachew SM; Paragios N Neuroimage; 2023 Jan; 265():119787. PubMed ID: 36473647 [TBL] [Abstract][Full Text] [Related]
49. Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. Yoo Y; Tang LYW; Brosch T; Li DKB; Kolind S; Vavasour I; Rauscher A; MacKay AL; Traboulsee A; Tam RC Neuroimage Clin; 2018; 17():169-178. PubMed ID: 29071211 [TBL] [Abstract][Full Text] [Related]
50. Detection of Gad-enhancing lesions in multiple sclerosis using conditional random fields. Karimaghaloo Z; Shah M; Francis SJ; Arnold DL; Collins DL; Arbel T Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):41-8. PubMed ID: 20879381 [TBL] [Abstract][Full Text] [Related]
51. MRI parameters for prediction of multiple sclerosis diagnosis in children with acute CNS demyelination: a prospective national cohort study. Verhey LH; Branson HM; Shroff MM; Callen DJ; Sled JG; Narayanan S; Sadovnick AD; Bar-Or A; Arnold DL; Marrie RA; Banwell B; Lancet Neurol; 2011 Dec; 10(12):1065-73. PubMed ID: 22067635 [TBL] [Abstract][Full Text] [Related]
52. Hierarchical conditional random fields for detection of gad-enhancing lesions in multiple sclerosis. Karimaghaloo Z; Arnold DL; Collins DL; Arbel T Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):379-86. PubMed ID: 23286071 [TBL] [Abstract][Full Text] [Related]
53. Detecting new lesion formation in multiple sclerosis: the relative contributions of monthly dual-echo and T1-weighted scans after triple-dose gadolinium. Filippi M; Mastronardo G; Rocca MA; Capra R; Gasperini C; Rovaris M; Bastianello S; Comi G Eur Neurol; 1998 Oct; 40(3):146-50. PubMed ID: 9748672 [TBL] [Abstract][Full Text] [Related]
54. Exploring uncertainty measures in deep networks for Multiple sclerosis lesion detection and segmentation. Nair T; Precup D; Arnold DL; Arbel T Med Image Anal; 2020 Jan; 59():101557. PubMed ID: 31677438 [TBL] [Abstract][Full Text] [Related]
55. Relapsing-remitting multiple sclerosis: sequential enhanced MR imaging vs clinical findings in determining disease activity. Barkhof F; Scheltens P; Frequin ST; Nauta JJ; Tas MW; Valk J; Hommes OR AJR Am J Roentgenol; 1992 Nov; 159(5):1041-7. PubMed ID: 1414773 [TBL] [Abstract][Full Text] [Related]
56. MRI-based Identification and Classification of Major Intracranial Tumor Types by Using a 3D Convolutional Neural Network: A Retrospective Multi-institutional Analysis. Chakrabarty S; Sotiras A; Milchenko M; LaMontagne P; Hileman M; Marcus D Radiol Artif Intell; 2021 Sep; 3(5):e200301. PubMed ID: 34617029 [TBL] [Abstract][Full Text] [Related]
57. Gadoteridol in multiple sclerosis patients. A comparison of single and triple dose with immediate vs. delayed imaging. Wolansky LJ; Finden SG; Chang R; Conigliari M; Lee HJ; Shaderowsky PD; Cook SD Clin Imaging; 1998; 22(6):385-92. PubMed ID: 9876905 [TBL] [Abstract][Full Text] [Related]
58. Automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI using conditional random fields. Karimaghaloo Z; Shah M; Francis SJ; Arnold DL; Collins DL; Arbel T IEEE Trans Med Imaging; 2012 Jun; 31(6):1181-94. PubMed ID: 22318484 [TBL] [Abstract][Full Text] [Related]
59. Bayesian classification of multiple sclerosis lesions in longitudinal MRI using subtraction images. Elliott C; Francis SJ; Arnold DL; Collins DL; Arbel T Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):290-7. PubMed ID: 20879327 [TBL] [Abstract][Full Text] [Related]
60. Correlation between enhancing lesion number and volume on standard and triple dose gadolinium-enhanced brain MRI scans from patients with multiple sclerosis. Rovaris M; Bastianello S; Capra R; Comi G; Yousry TA; Filippi M Magn Reson Imaging; 1999 Sep; 17(7):985-8. PubMed ID: 10463648 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]