BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 31845988)

  • 1. Using deep learning to associate human genes with age-related diseases.
    Fabris F; Palmer D; Salama KM; de Magalhães JP; Freitas AA
    Bioinformatics; 2020 Apr; 36(7):2202-2208. PubMed ID: 31845988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene prediction of aging-related diseases based on DNN and Mashup.
    Ye J; Wang S; Yang X; Tang X
    BMC Bioinformatics; 2021 Dec; 22(1):597. PubMed ID: 34920719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of infectious disease-associated host genes using machine learning techniques.
    Barman RK; Mukhopadhyay A; Maulik U; Das S
    BMC Bioinformatics; 2019 Dec; 20(1):736. PubMed ID: 31881961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network.
    Shi Q; Chen W; Huang S; Jin F; Dong Y; Wang Y; Xue Z
    Bioinformatics; 2019 Dec; 35(24):5128-5136. PubMed ID: 31197306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep neural network approach for learning intrinsic protein-RNA binding preferences.
    Ben-Bassat I; Chor B; Orenstein Y
    Bioinformatics; 2018 Sep; 34(17):i638-i646. PubMed ID: 30423078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning architecture for metabolic pathway prediction.
    Baranwal M; Magner A; Elvati P; Saldinger J; Violi A; Hero AO
    Bioinformatics; 2020 Apr; 36(8):2547-2553. PubMed ID: 31879763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of human circadian genes based on time course gene expression profiles by using a deep learning method.
    Cui P; Zhong T; Wang Z; Wang T; Zhao H; Liu C; Lu H
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2274-2283. PubMed ID: 29241666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully interpretable deep learning model of transcriptional control.
    Liu Y; Barr K; Reinitz J
    Bioinformatics; 2020 Jul; 36(Suppl_1):i499-i507. PubMed ID: 32657418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer learning for biomedical named entity recognition with neural networks.
    Giorgi JM; Bader GD
    Bioinformatics; 2018 Dec; 34(23):4087-4094. PubMed ID: 29868832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multimodal deep learning framework for predicting drug-drug interaction events.
    Deng Y; Xu X; Qiu Y; Xia J; Zhang W; Liu S
    Bioinformatics; 2020 Aug; 36(15):4316-4322. PubMed ID: 32407508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-type biomedical named entity recognition with deep multi-task learning.
    Wang X; Zhang Y; Ren X; Zhang Y; Zitnik M; Shang J; Langlotz C; Han J
    Bioinformatics; 2019 May; 35(10):1745-1752. PubMed ID: 30307536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database.
    Chen-Ying Hung ; Wei-Chen Chen ; Po-Tsun Lai ; Ching-Heng Lin ; Chi-Chun Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3110-3113. PubMed ID: 29060556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new approach for interpreting Random Forest models and its application to the biology of ageing.
    Fabris F; Doherty A; Palmer D; de Magalhães JP; Freitas AA
    Bioinformatics; 2018 Jul; 34(14):2449-2456. PubMed ID: 29462247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning on chaos game representation for proteins.
    Löchel HF; Eger D; Sperlea T; Heider D
    Bioinformatics; 2020 Jan; 36(1):272-279. PubMed ID: 31225868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Recombination Spots Using Novel Hybrid Feature Extraction Method via Deep Learning Approach.
    Khan F; Khan M; Iqbal N; Khan S; Muhammad Khan D; Khan A; Wei DQ
    Front Genet; 2020; 11():539227. PubMed ID: 33093842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PScL-DDCFPred: an ensemble deep learning-based approach for characterizing multiclass subcellular localization of human proteins from bioimage data.
    Ullah M; Hadi F; Song J; Yu DJ
    Bioinformatics; 2022 Aug; 38(16):4019-4026. PubMed ID: 35771606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an IoT Architecture Based on a Deep Neural Network against Cyber Attacks for Automated Guided Vehicles.
    Elsisi M; Tran MQ
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepIsoFun: a deep domain adaptation approach to predict isoform functions.
    Shaw D; Chen H; Jiang T
    Bioinformatics; 2019 Aug; 35(15):2535-2544. PubMed ID: 30535380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.