These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 31846286)
1. Tough Ordered Mesoporous Elastomeric Biomaterials Formed at Ambient Conditions. Rajasekharan AK; Gyllensten C; Blomstrand E; Liebi M; Andersson M ACS Nano; 2020 Jan; 14(1):241-254. PubMed ID: 31846286 [TBL] [Abstract][Full Text] [Related]
2. 3D Printing of Photocuring Elastomers with Excellent Mechanical Strength and Resilience. Ji Z; Zhang X; Yan C; Jia X; Xia Y; Wang X; Zhou F Macromol Rapid Commun; 2019 Apr; 40(8):e1800873. PubMed ID: 30779410 [TBL] [Abstract][Full Text] [Related]
4. Tough and Three-Dimensional-Printable Poly(2-methoxyethyl acrylate)-Silica Composite Elastomer with Antiplatelet Adhesion Property. Asai F; Seki T; Sugawara-Narutaki A; Sato K; Odent J; Coulembier O; Raquez JM; Takeoka Y ACS Appl Mater Interfaces; 2020 Oct; 12(41):46621-46628. PubMed ID: 32940451 [TBL] [Abstract][Full Text] [Related]
5. 3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications. Bachtiar EO; Erol O; Millrod M; Tao R; Gracias DH; Romer LH; Kang SH J Mech Behav Biomed Mater; 2020 Apr; 104():103649. PubMed ID: 32174407 [TBL] [Abstract][Full Text] [Related]
6. 3D printing of robust and biocompatible poly(ethylene glycol)diacrylate/nano-hydroxyapatite composites Deng X; Huang B; Hu R; Chen L; Tang Y; Lu C; Chen Z; Zhang W; Zhang X J Mater Chem B; 2021 Feb; 9(5):1315-1324. PubMed ID: 33443259 [TBL] [Abstract][Full Text] [Related]
7. Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants. Wu L; Virdee J; Maughan E; Darbyshire A; Jell G; Loizidou M; Emberton M; Butler P; Howkins A; Reynolds A; Boyd IW; Birchall M; Song W Acta Biomater; 2018 Oct; 80():188-202. PubMed ID: 30223094 [TBL] [Abstract][Full Text] [Related]
8. 3D printing of photocurable poly(glycerol sebacate) elastomers. Yeh YC; Highley CB; Ouyang L; Burdick JA Biofabrication; 2016 Oct; 8(4):045004. PubMed ID: 27716633 [TBL] [Abstract][Full Text] [Related]
9. Redox Reducible and Hydrolytically Degradable PEG-PLA Elastomers as Biomaterial for Temporary Drug-Eluting Medical Devices. Rupnik S; Buwalda S; Dejean S; Bethry A; Garric X; Coudane J; Nottelet B Macromol Biosci; 2016 Dec; 16(12):1792-1802. PubMed ID: 27377673 [TBL] [Abstract][Full Text] [Related]
10. Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production. Miller AT; Safranski DL; Wood C; Guldberg RE; Gall K J Mech Behav Biomed Mater; 2017 Nov; 75():1-13. PubMed ID: 28689135 [TBL] [Abstract][Full Text] [Related]
11. Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffolds. Güney A; Malda J; Dhert WJA; Grijpma DW Int J Artif Organs; 2017 May; 40(4):176-184. PubMed ID: 28165584 [TBL] [Abstract][Full Text] [Related]
12. Ultra-Tough, Strong, and Defect-Tolerant Elastomers with Self-Healing and Intelligent-Responsive Abilities. Zhu Y; Shen Q; Wei L; Fu X; Huang C; Zhu Y; Zhao L; Huang G; Wu J ACS Appl Mater Interfaces; 2019 Aug; 11(32):29373-29381. PubMed ID: 31340639 [TBL] [Abstract][Full Text] [Related]
13. 3D Printing of Elastomeric Bioinspired Complex Adhesive Microstructures. Dayan CB; Chun S; Krishna-Subbaiah N; Drotlef DM; Akolpoglu MB; Sitti M Adv Mater; 2021 Oct; 33(40):e2103826. PubMed ID: 34396591 [TBL] [Abstract][Full Text] [Related]
14. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Yuk H; Zhang T; Parada GA; Liu X; Zhao X Nat Commun; 2016 Jun; 7():12028. PubMed ID: 27345380 [TBL] [Abstract][Full Text] [Related]
15. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering. Chen J; Dong R; Ge J; Guo B; Ma PX ACS Appl Mater Interfaces; 2015 Dec; 7(51):28273-85. PubMed ID: 26641320 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of fractal elastomer surfaces. Nonomura Y; Seino E; Abe S; Mayama H J Oleo Sci; 2013; 62(8):587-90. PubMed ID: 23985488 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable and radically polymerized elastomers with enhanced processing capabilities. Ifkovits JL; Padera RF; Burdick JA Biomed Mater; 2008 Sep; 3(3):034104. PubMed ID: 18689916 [TBL] [Abstract][Full Text] [Related]
18. Micromechanical properties of biomedical hydrogel for application as microchannel elastomer. Ige EO; Raj MK; Dare AA; Chakraborty S J Mech Behav Biomed Mater; 2018 Jan; 77():217-224. PubMed ID: 28946052 [TBL] [Abstract][Full Text] [Related]
19. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Li Y; Shimizu H Macromol Biosci; 2007 Jul; 7(7):921-8. PubMed ID: 17578835 [TBL] [Abstract][Full Text] [Related]
20. Thermoplastic biodegradable elastomers based on ε-caprolactone and L-lactide block co-polymers: a new synthetic approach. Lipik VT; Kong JF; Chattopadhyay S; Widjaja LK; Liow SS; Venkatraman SS; Abadie MJ Acta Biomater; 2010 Nov; 6(11):4261-70. PubMed ID: 20566308 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]